

JAVA PROGRAMMING

UNIT-I

L 1.1

Java History

• Computer language innovation and development

occurs for two fundamental reasons:

 1) to adapt to changing environments and uses

 2) to implement improvements in the art of

programming

• The development of Java was driven by both in equal

measures.

• Many Java features are inherited from the earlier

languages:

 B  C  C++  Java

L 1.2

Before Java: C

• Designed by Dennis Ritchie in 1970s.

• Before C: BASIC, COBOL, FORTRAN, PASCAL

• C- structured, efficient, high-level language that could
replace assembly code when creating systems
programs.

• Designed, implemented and tested by programmers.

L 1.3

Before Java: C++

• Designed by Bjarne Stroustrup in 1979.

• Response to the increased complexity of programs and
respective improvements in the programming
paradigms and methods:

1) assembler languages

2) high-level languages

3) structured programming

4) object-oriented programming (OOP)

• OOP – methodology that helps organize complex
programs through the use of inheritance,
encapsulation and polymorphism.

• C++ extends C by adding object-oriented features.

L 1.4

Java: History

 • In 1990, Sun Microsystems started a project called
Green.

• Objective: to develop software for consumer electronics.

• Project was assigned to James Gosling, a veteran of
classic network software design. Others included Patrick
Naughton, ChrisWarth, Ed Frank, and Mike Sheridan.

• The team started writing programs in C++ for embedding
into

– toasters

– washing machines

– VCR’s

• Aim was to make these appliances more “intelligent”.

L 1.5

Java: History (contd.)

 • C++ is powerful, but also dangerous. The power and
popularity of C derived from the extensive use of pointers.
However, any incorrect use of pointers can cause memory
leaks, leading the program to crash.

• In a complex program, such memory leaks are often hard
to detect.

• Robustness is essential. Users have come to expect that
Windows may crash or that a program running under
Windows may crash. (“This program has performed an
illegal operation and will be shut down”)

• However, users do not expect toasters to crash, or
washing machines to crash.

• A design for consumer electronics has to be robust.

• Replacing pointers by references, and automating memory
management was the proposed solution.

L 1.6

Java: History (contd.)

• Hence, the team built a new programming language called Oak,
which avoided potentially dangerous constructs in C++, such
as pointers, pointer arithmetic, operator overloading etc.

• Introduced automatic memory management, freeing the
programmer to concentrate on other things.

• Architecture neutrality (Platform independence)

• Many different CPU’s are used as controllers. Hardware chips
are evolving rapidly. As better chips become available, older
chips become obsolete and their production is stopped.
Manufacturers of toasters and washing machines would like to
use the chips available off the shelf, and would not like to
reinvest in compiler development every two-three years.

• So, the software and programming language had to be
architecture neutral.

L 1.7

Java: History (contd)

• It was soon realized that these design goals of consumer electronics

perfectly suited an ideal programming language for the Internet and WWW,
which should be:

 object-oriented (& support GUI)

– robust

– architecture neutral

• Internet programming presented a BIG business opportunity. Much bigger
than programming for consumer electronics.

• Java was “re-targeted” for the Internet

• The team was expanded to include Bill Joy (developer of Unix), Arthur van
Hoff, Jonathan Payne, Frank Yellin, Tim Lindholm etc.

• In 1994, an early web browser called WebRunner was written in Oak.
WebRunner was later renamed HotJava.

• In 1995, Oak was renamed Java.

• A common story is that the name Java relates to the place from where the
development team got its coffee. The name Java survived the trade mark
search.

L 1.8

Java History

• Designed by James Gosling, Patrick Naughton,
Chris Warth, Ed Frank and Mike Sheridan at Sun
Microsystems in 1991.

• The original motivation is not Internet: platform-
independent software embedded in consumer
electronics devices.

• With Internet, the urgent need appeared to break the
fortified positions of Intel, Macintosh and Unix
programmer communities.

• Java as an “Internet version of C++”? No.

• Java was not designed to replace C++, but to solve a
different set of problems.

L 1.9

The Java Buzzwords

• The key considerations were summed up by the Java

team in the following list of buzzwords:
 Simple

 Secure

 Portable

 Object-oriented

 Robust

 Multithreaded

 Architecture-neutral

 Interpreted

 High performance

 Distributed

 Dynamic

L 1.10

• simple – Java is designed to be easy for the professional
programmer to learn and use.

• object-oriented: a clean, usable, pragmatic approach to
objects, not restricted by the need for compatibility with
other languages.

• Robust: restricts the programmer to find the mistakes
early, performs compile-time (strong typing) and run-time
(exception-handling) checks, manages memory
automatically.

• Multithreaded: supports multi-threaded programming for
writing program that perform concurrent computations

L 1.11

• Architecture-neutral: Java Virtual Machine

provides a platform independent environment for the

execution of Java byte code

• Interpreted and high-performance: Java programs

are compiled into an intermediate representation –

byte code:

a) can be later interpreted by any JVM

b) can be also translated into the native machine

code for efficiency.

L 1.12

• Distributed: Java handles TCP/IP protocols,

accessing a resource through its URL much like

accessing a local file.

• Dynamic: substantial amounts of run-time type

information to verify and resolve access to

objects at run-time.

• Secure: programs are confined to the Java

execution environment and cannot access other

parts of the computer.

L 1.13

• Portability: Many types of computers and
operating systems are in use throughout the
world—and many are connected to the Internet.

• For programs to be dynamically downloaded to
all the various types of platforms connected to
the Internet, some means of generating portable
executable code is needed. The same
mechanism that helps ensure security also helps
create portability.

• Indeed, Java's solution to these two problems is
both elegant and efficient.

L 1.14

Data Types

• Java defines eight simple types:

1)byte – 8-bit integer type

2)short – 16-bit integer type

3)int – 32-bit integer type

4)long – 64-bit integer type

5)float – 32-bit floating-point type

6)double – 64-bit floating-point type

7)char – symbols in a character set

8)boolean – logical values true and false

L 1.15

• byte: 8-bit integer type.

 Range: -128 to 127.

 Example: byte b = -15;

 Usage: particularly when working with data
streams.

• short: 16-bit integer type.

Range: -32768 to 32767.

Example: short c = 1000;

Usage: probably the least used simple type.

L 1.16

• int: 32-bit integer type.

Range: -2147483648 to 2147483647.

Example: int b = -50000;

Usage:

1) Most common integer type.

2) Typically used to control loops and to index
arrays.

3) Expressions involving the byte, short and int
values are promoted to int before calculation.

L 1.17

• long: 64-bit integer type.

Range: -9223372036854775808 to
9223372036854775807.

Example: long l = 10000000000000000;

Usage: 1) useful when int type is not large enough to
hold the desired value

• float: 32-bit floating-point number.

Range: 1.4e-045 to 3.4e+038.

Example: float f = 1.5;

Usage:

1) fractional part is needed

2) large degree of precision is not required

L 1.18

• double: 64-bit floating-point number.

Range: 4.9e-324 to 1.8e+308.

Example: double pi = 3.1416;

Usage:

1) accuracy over many iterative calculations

2) manipulation of large-valued numbers

L 1.19

char: 16-bit data type used to store characters.

Range: 0 to 65536.

Example: char c = ‘a’;

Usage:

1) Represents both ASCII and Unicode character

sets; Unicode defines a

character set with characters found in (almost) all

human languages.

2) Not the same as in C/C++ where char is 8-bit

and represents ASCII only.

L 1.20

• boolean: Two-valued type of logical values.

Range: values true and false.

Example: boolean b = (1<2);

Usage:

1) returned by relational operators, such as

1<2

2) required by branching expressions such

as if or for

L 2.1

Variables

• declaration – how to assign a type to a variable

• initialization – how to give an initial value to a variable

• scope – how the variable is visible to other parts of the
program

• lifetime – how the variable is created, used and destroyed

• type conversion – how Java handles automatic type
conversion

• type casting – how the type of a variable can be narrowed
down

• type promotion – how the type of a variable can be
expanded

L 2.2

Variables

• Java uses variables to store data.

• To allocate memory space for a variable JVM

requires:

1) to specify the data type of the variable

2) to associate an identifier with the variable

3) optionally, the variable may be assigned an

initial value

• All done as part of variable declaration.

L 2.3

Basic Variable Declaration

• datatype identifier [=value];

• datatype must be

– A simple datatype

– User defined datatype (class type)

• Identifier is a recognizable name confirm

to identifier rules

• Value is an optional initial value.

L 2.4

Variable Declaration

• We can declare several variables at the same time:

 type identifier [=value][, identifier [=value] …];

Examples:

 int a, b, c;

 int d = 3, e, f = 5;

 byte g = 22;

 double pi = 3.14159;

 char ch = 'x';

L 2.5

Variable Scope

• Scope determines the visibility of program elements with
respect to other program elements.

• In Java, scope is defined separately for classes and methods:
1) variables defined by a class have a global scope

2) variables defined by a method have a local scope

A scope is defined by a block:

{

…

}

A variable declared inside the scope is not visible outside:

{

int n;

}

n = 1;// this is illegal

L 2.6

Variable Lifetime

• Variables are created when their scope is
entered by control flow and destroyed when their
scope is left:

• A variable declared in a method will not hold its
value between different invocations of this
method.

• A variable declared in a block looses its value
when the block is left.

• Initialized in a block, a variable will be re-
initialized with every re-entry. Variables lifetime
is confined to its scope!

L 2.7

Arrays

• An array is a group of liked-typed variables referred to
by a common

• name, with individual variables accessed by their
index.

• Arrays are:

1) declared

2) created

3) initialized

4) used

• Also, arrays can have one or several dimensions.

L 2.8

Array Declaration

• Array declaration involves:

1) declaring an array identifier

2) declaring the number of dimensions

3) declaring the data type of the array elements

• Two styles of array declaration:

 type array-variable[];

 or

 type [] array-variable;

L 2.9

Array Creation

• After declaration, no array actually exists.

• In order to create an array, we use the new

operator:

 type array-variable[];

 array-variable = new type[size];

• This creates a new array to hold size elements

of type type, which reference will be kept in the

variable array-variable.

L 2.10

Array Indexing

• Later we can refer to the elements of this
array through their indexes:

• array-variable[index]

• The array index always starts with zero!

• The Java run-time system makes sure that
all array indexes are in the correct range,
otherwise raises a run-time error.

L 2.11

Array Initialization

• Arrays can be initialized when they are

declared:

• int monthDays[] =

{31,28,31,30,31,30,31,31,30,31,30,31};

• Note:

1) there is no need to use the new operator

2) the array is created large enough to hold all

specified elements

L 2.12

Multidimensional Arrays

• Multidimensional arrays are arrays of arrays:

1) declaration: int array[][];

2) creation: int array = new int[2][3];

3) initialization

 int array[][] = { {1, 2, 3}, {4, 5, 6} };

L 2.13

Operators Types

• Java operators are used to build value

expressions.

• Java provides a rich set of operators:

 1) assignment

 2) arithmetic

 3) relational

 4) logical

 5) bitwise

L 2.14

Arithmetic assignments

+= v += expr; v = v + expr ;

-= v -=expr; v = v - expr ;

*= v *= expr; v = v * expr ;

/= v /= expr; v = v / expr ;

%= v %= expr; v = v % expr ;

L 2.15

Basic Arithmetic Operators

+ op1 + op2 ADD

- op1 - op2 SUBSTRACT

* op1 * op2 MULTIPLY

/ op1 / op2 DIVISION

% op1 % op2 REMAINDER

L 2.16

Relational operator

== Equals to Apply to any type

!= Not equals to Apply to any type

> Greater than Apply to numerical type

< Less than Apply to numerical type

>= Greater than or equal Apply to numerical type

<= Less than or equal Apply to numerical type

L 2.17

Logical operators

& op1 & op2 Logical AND

| op1 | op2 Logical OR

&& op1 && op2 Short-circuit

AND

|| op1 || op2 Short-circuit OR

! ! op Logical NOT

^ op1 ^ op2 Logical XOR

L 2.18

Bit wise operators

~ ~op Inverts all bits

& op1 & op2 Produces 1 bit if both operands are 1

| op1 |op2 Produces 1 bit if either operand is 1

^ op1 ^ op2 Produces 1 bit if exactly one operand is 1

>> op1 >> op2 Shifts all bits in op1 right by the value of

op2

<< op1 << op2 Shifts all bits in op1 left by the value of

op2

L 2.19

• An expression is a construct made up of variables,
operators, and method invocations, which are
constructed according to the syntax of the language, that
evaluates to a single value.

• Examples of expressions are in bold below:

int number = 0;

 anArray[0] = 100;

System.out.println ("Element 1 at index 0: " +
anArray[0]);

 int result = 1 + 2; // result is now 3 if(value1 ==
value2)

 System.out.println("value1 == value2");

Expressions

L 2.20

Expressions

• The data type of the value returned by an expression depends on

the elements used in the expression.

• The expression number = 0 returns an int because the
assignment operator returns a value of the same data type as its
left-hand operand; in this case, number is an int.

• As you can see from the other expressions, an expression can
return other types of values as well, such as boolean or String.

• The Java programming language allows you to construct
compound expressions from various smaller expressions as long
as the data type required by one part of the expression matches
the data type of the other.

• Here's an example of a compound expression: 1 * 2 * 3

L 3.1

Control Statements

• Java control statements cause the flow of execution

to advance and branch based on the changes to the
state of the program.

• Control statements are divided into three groups:

• 1) selection statements allow the program to choose
different parts of the execution based on the
outcome of an expression

• 2) iteration statements enable program execution to
repeat one or more statements

• 3) jump statements enable your program to execute
in a non-linear fashion

L 3.2

Selection Statements

• Java selection statements allow to control the

flow of program’s execution based upon

conditions known only during run-time.

• Java provides four selection statements:

 1) if

 2) if-else

 3) if-else-if

 4) switch

L 3.3

Iteration Statements

• Java iteration statements enable repeated
execution of part of a program until a certain
termination condition becomes true.

• Java provides three iteration statements:

 1) while

 2) do-while

 3) for

L 3.4

Jump Statements

• Java jump statements enable transfer of
control to other parts of program.

• Java provides three jump statements:

 1) break

 2) continue

 3) return

• In addition, Java supports exception
handling that can also alter the control flow
of a program.

L 3.5

Type Conversion

• Size Direction of Data Type

– Widening Type Conversion (Casting down)

• Smaller Data Type  Larger Data Type

– Narrowing Type Conversion (Casting up)

• Larger Data Type  Smaller Data Type

• Conversion done in two ways

– Implicit type conversion

• Carried out by compiler automatically

– Explicit type conversion

• Carried out by programmer using casting

L 3.6

Type Conversion

• Widening Type Converstion

– Implicit conversion by compiler automatically

byte -> short, int, long, float, double

short -> int, long, float, double

char -> int, long, float, double

int -> long, float, double

long -> float, double

float -> double

L 3.7

Type Conversion

• Narrowing Type Conversion

– Programmer should describe the conversion

explicitly

byte -> char

short -> byte, char

char -> byte, short

int -> byte, short, char

long -> byte, short, char, int

float -> byte, short, char, int, long

double -> byte, short, char, int, long, float

L 3.8

Type Conversion

• byte and short are always promoted to int

• if one operand is long, the whole

expression is promoted to long

• if one operand is float, the entire

expression is promoted to float

• if any operand is double, the result is

double

L 3.9

Type Casting

• General form: (targetType) value

• Examples:

• 1) integer value will be reduced module
bytes range:

 int i;

 byte b = (byte) i;

• 2) floating-point value will be truncated to
integer value:

float f;

int i = (int) f;

4.1

Simple Java Program

• A class to display a simple message:

 class MyProgram

 {

 public static void main(String[] args)

 {

 System.out.println(“First Java program.");

 }

 }

L 4.2

What is an Object?

• Real world objects are things that have:

 1) state

 2) behavior

 Example: your dog:

• state – name, color, breed, sits?, barks?, wages
tail?, runs?

• behavior – sitting, barking, waging tail, running

• A software object is a bundle of variables (state)
and methods (operations).

L 4.3

What is a Class?

• A class is a blueprint that defines the
variables and methods common to all
objects of a certain kind.

• Example: ‘your dog’ is a object of the class
Dog.

• An object holds values for the variables
defines in the class.

• An object is called an instance of the
Class

L 4.4

Object Creation

• A variable is declared to refer to the objects of
type/class String:

 String s;

• The value of s is null; it does not yet refer to any
object.

• A new String object is created in memory with
initial “abc” value:

• String s = new String(“abc”);

• Now s contains the address of this new object.

L 4.5

Object Destruction

• A program accumulates memory through its

execution.

• Two mechanism to free memory that is no longer
need by the program:

 1) manual – done in C/C++

 2) automatic – done in Java

• In Java, when an object is no longer accessible
through any variable, it is eventually removed from
the memory by the garbage collector.

• Garbage collector is parts of the Java Run-Time
Environment.

L 4.6

Class

• A basis for the Java language.

• Each concept we wish to describe in Java

must be included inside a class.

• A class defines a new data type, whose

values are objects:

• A class is a template for objects

• An object is an instance of a class

L 4.7

Class Definition

• A class contains a name, several variable declarations

(instance variables) and several method declarations. All
are called members of the class.

• General form of a class:

 class classname {

 type instance-variable-1;

 …

 type instance-variable-n;

 type method-name-1(parameter-list) { … }

 type method-name-2(parameter-list) { … }

 …

 type method-name-m(parameter-list) { … }

 }

L 4.8

Example: Class Usage

class Box {

double width;

double height;

double depth;

}

class BoxDemo {

public static void main(String args[]) {

Box mybox = new Box();

double vol;

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

vol = mybox.width * mybox.height * mybox.depth;

System.out.println ("Volume is " + vol);

} }

L 5.1

Constructor

• A constructor initializes the instance variables of an object.

• It is called immediately after the object is created but
before the new operator completes.

 1) it is syntactically similar to a method:

 2) it has the same name as the name of its class

 3) it is written without return type; the default
 return type of a class

• constructor is the same class

• When the class has no constructor, the default constructor
automatically initializes all its instance variables with zero.

L 5.2

Example: Constructor

class Box {

double width;

double height;

double depth;

Box() {

System.out.println("Constructing Box");

width = 10; height = 10; depth = 10;

}

double volume() {

return width * height * depth;

}

}

L 5.3

Parameterized Constructor

class Box {

double width;

double height;

double depth;

Box(double w, double h, double d) {

width = w; height = h; depth = d;

}

double volume()

 { return width * height * depth;

}

}

L 5.4

Methods

• General form of a method definition:

 type name(parameter-list) {

 … return value;

 …

 }

• Components:

 1) type - type of values returned by the method. If a
method does not return any value, its return type must
be void.

 2) name is the name of the method

 3) parameter-list is a sequence of type-identifier lists
separated by commas

 4) return value indicates what value is returned by the
method.

L 5.5

Example: Method

• Classes declare methods to hide their internal data
structures, as well as for their own internal use: Within
a class, we can refer directly to its member variables:

class Box {

double width, height, depth;

void volume() {

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

L 5.6

Parameterized Method

• Parameters increase generality and applicability
of a method:

• 1) method without parameters

 int square() { return 10*10; }

• 2) method with parameters

 int square(int i) { return i*i; }

• Parameter: a variable receiving value at the time
the method is invoked.

• Argument: a value passed to the method when it
is invoked.

L 6.1

Access Control: Data Hiding and

Encapsulation

• Java provides control over the visibility of variables
and methods.

• Encapsulation, safely sealing data within the
capsule of the class Prevents programmers from
relying on details of class implementation, so you
can update without worry

• Helps in protecting against accidental or wrong
usage.

• Keeps code elegant and clean (easier to maintain)

L 6.2

Access Modifiers: Public, Private,

Protected

• Public: keyword applied to a class, makes it
available/visible everywhere. Applied to a
method or variable, completely visible.

• Default(No visibility modifier is specified): it
behaves like public in its package and
private in other packages.

• Default Public keyword applied to a class,
makes it available/visible everywhere.
Applied to a method or variable, completely
visible.

L 6.3

• Private fields or methods for a class only
visible within that class. Private members
are not visible within subclasses, and are
not inherited.

• Protected members of a class are visible
within the class, subclasses and also
within all classes that are in the same
package as that class.

L 6.4

Visibility

public class Circle {

 private double x,y,r;

 // Constructor

 public Circle (double x, double y, double r) {

 this.x = x;

 this.y = y;

 this.r = r;

 }

 //Methods to return circumference and area

 public double circumference() { return 2*3.14*r;}

 public double area() { return 3.14 * r * r; }

 }

L 6.5

Keyword this

• Can be used by any object to refer to

itself in any class method

• Typically used to

– Avoid variable name collisions

– Pass the receiver as an argument

– Chain constructors

L 6.6

Keyword this

• Keyword this allows a method to refer to the

object that invoked it.

• It can be used inside any method to refer to the

current object:

 Box(double width, double height, double depth) {

 this.width = width;

 this.height = height;

 this.depth = depth;

 }

L 6.7

Garbage Collection

• Garbage collection is a mechanism to remove objects

from memory when they are no longer needed.

• Garbage collection is carried out by the garbage
collector:

• 1) The garbage collector keeps track of how many
references an object has.

• 2) It removes an object from memory when it has no
longer any references.

• 3) Thereafter, the memory occupied by the object can be
allocated again.

• 4) The garbage collector invokes the finalize method.

L 6.8

finalize() Method

• A constructor helps to initialize an object just
after it has been created.

• In contrast, the finalize method is invoked just
before the object is destroyed:

• 1) implemented inside a class as:

 protected void finalize() { … }

• 2) implemented when the usual way of removing
objects from memory is insufficient, and some
special actions has to be carried out

L 7.1

Method Overloading

• It is legal for a class to have two or more
methods with the same name.

• However, Java has to be able to uniquely
associate the invocation of a method with its
definition relying on the number and types of
arguments.

• Therefore the same-named methods must be
distinguished:

• 1) by the number of arguments, or

• 2) by the types of arguments

• Overloading and inheritance are two ways to
implement polymorphism.

L 7.2

Example: Overloading

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

void test(int a) {

System.out.println("a: " + a);

}

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

double test(double a) {

System.out.println("double a: " + a); return a*a;

}

}

L 7.3

Constructor Overloading

class Box {

double width, height, depth;

Box(double w, double h, double d) {

width = w; height = h; depth = d;

}

Box() {

width = -1; height = -1; depth = -1;

}

Box(double len) {

width = height = depth = len;

}

double volume() { return width * height * depth; }

}

L 7.4

Parameter Passing

• Two types of variables:

 1) simple types

 2) class types

• Two corresponding ways of how the arguments
are passed to methods:

• 1) by value a method receives a cope of the
original value; parameters of simple types

• 2) by reference a method receives the memory
address of the original value, not the value itself;
parameters of class types

L 7.5

Call by value

class CallByValue {

public static void main(String args[]) {

Test ob = new Test();

int a = 15, b = 20;

System.out.print("a and b before call: “);

System.out.println(a + " " + b);

ob.meth(a, b);

System.out.print("a and b after call: ");

System.out.println(a + " " + b);

}

}

L 7.6

Call by refference

• As the parameter hold the same address as the argument,
changes to the object inside the method do affect the object
used by the argument:

class CallByRef {

public static void main(String args[]) {

Test ob = new Test(15, 20);

System.out.print("ob.a and ob.b before call: “);

System.out.println(ob.a + " " + ob.b);

ob.meth(ob);

System.out.print("ob.a and ob.b after call: ");

System.out.println(ob.a + " " + ob.b);

}

}

L 8.1

Recursion

• A recursive method is a method that calls itself:

1) all method parameters and local variables are
allocated on the stack

2) arguments are prepared in the corresponding
parameter positions

3) the method code is executed for the new
arguments

4) upon return, all parameters and variables are
removed from the stack

5) the execution continues immediately after the
invocation point

L 8.2

Example: Recursion

class Factorial {

int fact(int n) {

if (n==1) return 1;

return fact(n-1) * n;

}

}

class Recursion {

public static void main(String args[]) {

Factorial f = new Factorial();

System.out.print("Factorial of 5 is ");

System.out.println(f.fact(5));

} }

L 8.3

String Handling

• String is probably the most commonly used class
in Java's class library. The obvious reason for this
is that strings are a very important part of
programming.

• The first thing to understand about strings is that
every string you create is actually an object of type
String. Even string constants are actually String
objects.

• For example, in the statement

 System.out.println("This is a String, too");

 the string "This is a String, too" is a String
constant

L 8.4

• Java defines one operator for String objects:

+.

• It is used to concatenate two strings. For

example, this statement

• String myString = "I" + " like " + "Java.";

 results in myString containing

 "I like Java."

L 8.5

• The String class contains several methods that you can
use. Here are a few. You can

• test two strings for equality by using

 equals(). You can obtain the length of a string by calling
the length() method. You can obtain the character at a
specified index within a string by calling charAt(). The
general forms of these three methods are shown here:

• // Demonstrating some String methods.

 class StringDemo2 {

 public static void main(String args[]) {

 String strOb1 = "First String";

 String strOb2 = "Second String";

 String strOb3 = strOb1;

 System.out.println("Length of strOb1: " +

 strOb1.length());

L 8.6

System.out.println ("Char at index 3 in strOb1: " +

strOb1.charAt(3));

if(strOb1.equals(strOb2))

System.out.println("strOb1 == strOb2");

else

System.out.println("strOb1 != strOb2");

if(strOb1.equals(strOb3))

System.out.println("strOb1 == strOb3");

else

System.out.println("strOb1 != strOb3");

} }

This program generates the following output:

Length of strOb1: 12

Char at index 3 in strOb1: s

strOb1 != strOb2

strOb1 == strOb3

 JAVA PROGRAMMING

UNIT-3

L 1.1

Concepts of exception handling

 Exceptions
 Exception is an abnormal condition that arises

when executing a program.

 In the languages that do not support exception
handling, errors must be checked and handled
manually, usually through the use of error codes.

 In contrast, Java:
1) provides syntactic mechanisms to signal, detect

and handle errors

2) ensures a clean separation between the code
executed in the

absence of errors and the code to handle various
kinds of errors

3) brings run-time error management into object-
oriented programming

L 1.2

Exception Handling

 An exception is an object that describes an

exceptional condition (error) that has occurred
when executing a program.

 Exception handling involves the following:

1) when an error occurs, an object (exception)
representing this error is created and thrown
in the method that caused it

2) that method may choose to handle the
exception itself or pass it on

3) either way, at some point, the exception is
caught and processed

L 1.3

Exception Sources

 Exceptions can be:

1) generated by the Java run-time system

Fundamental errors that violate the rules of the

Java language or the constraints of the Java

execution environment.

2) manually generated by programmer’s code

Such exceptions are typically used to report

some error conditions to the caller of a method.

L 1.4

Exception Constructs

 Five constructs are used in exception handling:

1) try – a block surrounding program statements to monitor
for exceptions

2) catch – together with try, catches specific kinds of
exceptions and handles them in some way

3) finally – specifies any code that absolutely must be
executed whether or not an exception occurs

4) throw – used to throw a specific exception from the
program

5) throws – specifies which exceptions a given method can
throw

L 1.5

Exception-Handling Block

General form:

try { … }

catch(Exception1 ex1) { … }

catch(Exception2 ex2) { … }

…

finally { … }

where:

1) try { … } is the block of code to monitor for exceptions

2) catch(Exception ex) { … } is exception handler for the

 exception Exception

3) finally { … } is the block of code to execute before the try

 block ends

L 2.1

Benefits of exception handling

 Separating Error-Handling code from

“regular” business logic code

 Propagating errors up the call stack

 Grouping and differentiating error types

L 2.2

Separating Error Handling Code

from Regular Code

In traditional programming, error detection, reporting, and

handling often lead to confusing code

Consider pseudocode method here that reads an

entire file into memory

readFile {

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

}

L 2.3

Traditional Programming: No

separation of error handling code

● In traditional programming, To handle such cases, the readFile
function must have more code to do error detection, reporting,
and handling.

errorCodeType readFile {

initialize errorCode = 0;

open the file;

if (theFileIsOpen) {

determine the length of the file;

if (gotTheFileLength) {

allocate that much memory;

if (gotEnoughMemory) {

read the file into memory;

if (readFailed) {

errorCode = -1;

}

}

L 2.4

else {

errorCode = -2;

}

 } else {

errorCode = -3;

}

close the file;

if (theFileDidntClose && errorCode == 0) {

errorCode = -4;

} else {

errorCode = errorCode and -4;

}

} else {

errorCode = -5;

}

return errorCode;

}

L 2.5

Separating Error Handling Code

from Regular Code (in Java)

Exceptions enable you to write the main flow of your code and
to deal with the exceptional cases elsewhere

readFile {

try {

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

} catch (fileOpenFailed) {

doSomething;

}

L 2.6

catch (sizeDeterminationFailed) {

doSomething;

}catch (memoryAllocationFailed) {

doSomething;

} catch (readFailed) {

doSomething;

} catch (fileCloseFailed) {

doSomething;

}

}

 Note that exceptions don't spare you the effort of
doing the work of detecting, reporting, and handling
errors, but they do help you organize the work more
effectively.

L 2.7

Propagating Errors Up the

Call Stack

 Suppose that the readFile method is the fourth method in

a series of nested method calls made by the main
program: method1 calls method2, which calls method3,
which finally calls readFile

 Suppose also that method1 is the only method interested
in the errors that might occur within readFile.

method1 {

call method2;

}

method2 {

call method3;

}

method3 {

call readFile;

}

L 2.8

Traditional Way of Propagating Errors

method1 {

errorCodeType error;

error = call method2;

if (error)

doErrorProcessing;

else

proceed;

}

errorCodeType method2 {

errorCodeType error;

error = call method3;

if (error)

return error;

else

proceed;

}

errorCodeType method3 {

errorCodeType error;

error = call readFile;

if (error)

return error;

else

proceed;

}

 Traditional error notification

Techniques force method2 and

method3 to propagate the error

codes returned by readFile up

the call stack until the error

codes finally reach method1—

the only method that is

interested in them.

L 2.9

Using Java Exception Handling

method1 {

try {

call method2;

} catch (exception e) {

doErrorProcessing;

}

}

method2 throws exception {

call method3;

}

method3 throws exception {

call readFile;

}

 Any checked exceptions

that can be thrown within a

method must be specified in

 its throws clause.

L 2.10

Grouping and Differentiating Error

Types

 Because all exceptions thrown within a program are objects,
the grouping or categorizing of exceptions is a natural
outcome of the class hierarchy

 An example of a group of related exception classes in the
Java platform are those defined in java.io.IOException and
its descendants

 IOException is the most general and represents any type of
error that can occur when performing I/O

 Its descendants represent more specific errors. For example,
FileNotFoundException means that a file could not be
located on disk.

L 2.11

 A method can write specific handlers that

can handle a very specific exception

The FileNotFoundException class has no

descendants, so the following handler can

handle only one type of exception.

catch (FileNotFoundException e) {

...

}

L 2.12

A method can catch an exception based on its
group or general type by specifying any of the
exception's super classes in the catch statement.

For example, to catch all I/O exceptions,
regardless of their specific type, an exception
handler specifies an IOException argument.

// Catch all I/O exceptions, including

// FileNotFoundException, EOFException, and so on.

catch (IOException e) {

...

}

L 2.13

Termination vs. resumption

 There are two basic models in exception-handling

theory.

 In termination the error is so critical there’s no way to
get back to where the exception occurred. Whoever
threw the exception decided that there was no way to
salvage the situation, and they don’t want to come back.

 The alternative is called resumption. It means that the
exception handler is expected to do something to rectify
the situation, and then the faulting method is retried,
presuming success the second time. If you want
resumption, it means you still hope to continue
execution after the exception is handled.

L 2.14

 In resumption a method call that want resumption-

like behavior (i.e don’t throw an exception all a

method that fixes the problem.)

 Alternatively, place your try block inside a while

loop that keeps reentering the try block until the

result is satisfactory.

 Operating systems that supported resumptive

exception handling eventually ended up using

termination-like code and skipping resumption.

L 3.1

Exception Hierarchy

 All exceptions are sub-classes of the build-in class

Throwable.

 Throwable contains two immediate sub-classes:

1) Exception – exceptional conditions that programs should
catch

 The class includes:

 a) RuntimeException – defined automatically for
 user programs to include: division by zero, invalid
 array indexing, etc.

 b) use-defined exception classes

2) Error – exceptions used by Java to indicate errors with
the runtime environment; user programs are not
supposed to catch them

L 3.2

Hierarchy of Exception Classes

L 3.3

Usage of try-catch

Statements

 Syntax:

try {

<code to be monitored for exceptions>

} catch (<ExceptionType1> <ObjName>) {

<handler if ExceptionType1 occurs>

} ...

} catch (<ExceptionTypeN> <ObjName>) {

<handler if ExceptionTypeN occurs>

}

L 3.4

Catching Exceptions:

The try-catch Statements

 class DivByZero {

 public static void main(String args[]) {

 try {

 System.out.println(3/0);

 System.out.println(“Please print me.”);

 } catch (ArithmeticException exc) {

 //Division by zero is an ArithmeticException

 System.out.println(exc);

 }

 System.out.println(“After exception.”);

 }

 }

L 3.5

Catching Exceptions:

Multiple catch

 class MultipleCatch {

 public static void main(String args[]) {

 try {

 int den = Integer.parseInt(args[0]);

 System.out.println(3/den);

 } catch (ArithmeticException exc) {

 System.out.println(“Divisor was 0.”);

 } catch (ArrayIndexOutOfBoundsException exc2) {

 System.out.println(“Missing argument.”);

 }

 System.out.println(“After exception.”);

 }

 }

L 3.6

Catching Exceptions:

Nested try's

class NestedTryDemo {

public static void main(String args[]){

try {

int a = Integer.parseInt(args[0]);

try {

int b = Integer.parseInt(args[1]);

System.out.println(a/b);

} catch (ArithmeticException e) {

System.out.println(“Div by zero error!");

} } catch (ArrayIndexOutOfBoundsException) {

System.out.println(“Need 2 parameters!");

} } }

L 3.7

Catching Exceptions:

Nested try's with methods

class NestedTryDemo2 {

 static void nestedTry(String args[]) {

 try {

 int a = Integer.parseInt(args[0]);

 int b = Integer.parseInt(args[1]);

 System.out.println(a/b);

 } catch (ArithmeticException e) {

System.out.println("Div by zero error!");

 } }

public static void main(String args[]){

 try {

 nestedTry(args);

 } catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("Need 2 parameters!");

 } } }

L 4.1

Throwing Exceptions(throw)

 So far, we were only catching the exceptions

thrown by the Java system.

 In fact, a user program may throw an

exception explicitly:

 throw ThrowableInstance;

 ThrowableInstance must be an object of

type Throwable or its subclass.

L 4.2

Once an exception is thrown by:

 throw ThrowableInstance;

1) the flow of control stops immediately

2) the nearest enclosing try statement is inspected if it has

a catch statement that matches the type of exception:

1) if one exists, control is transferred to that statement

2) otherwise, the next enclosing try statement is examined

3) if no enclosing try statement has a corresponding catch

clause, the default exception handler halts the program

and prints the stack

L 4.3

Creating Exceptions

Two ways to obtain a Throwable instance:

1) creating one with the new operator

 All Java built-in exceptions have at least two Constructors:

 One without parameters and another with one String

 parameter:

 throw new NullPointerException("demo");

2) using a parameter of the catch clause

 try { … } catch(Throwable e) { … e … }

L 4.4

Example: throw 1

class ThrowDemo {

//The method demoproc throws a NullPointerException

 exception which is immediately caught in the try block
and

 re-thrown:

static void demoproc() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc.");

throw e;

}

}

L 4.5

Example: throw 2

The main method calls demoproc within the try block

which catches and handles the NullPointerException

exception:

public static void main(String args[]) {

try {

demoproc();

} catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}

}

L 4.6

throws Declaration

 If a method is capable of causing an exception that it
does not handle, it must specify this behavior by the
throws clause in its declaration:

 type name(parameter-list) throws exception-list {

 …

 }

 where exception-list is a comma-separated list of all
types of exceptions that a method might throw.

 All exceptions must be listed except Error and
RuntimeException or any of their subclasses,
otherwise a compile-time error occurs.

L 4.7

Example: throws 1

 The throwOne method throws an exception that it does

not catch, nor declares it within the throws clause.

class ThrowsDemo {

static void throwOne() {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

throwOne();

}

}

 Therefore this program does not compile.

L 4.8

Example: throws 2

 Corrected program: throwOne lists exception, main catches it:

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

} catch (IllegalAccessException e) {

System.out.println("Caught " + e);

} } }

L 4.9

finally

 When an exception is thrown:

 1) the execution of a method is changed

 2) the method may even return prematurely.

 This may be a problem is many situations.

 For instance, if a method opens a file on entry and

closes on exit; exception handling should not

bypass the proper closure of the file.

 The finally block is used to address this problem.

L 4.10

finally Clause

 The try/catch statement requires at least one catch or finally

clause, although both are optional:

try { … }

catch(Exception1 ex1) { … } …

finally { … }

 Executed after try/catch whether of not the exception is
thrown.

 Any time a method is to return to a caller from inside the
try/catch block via:

 1) uncaught exception or

 2) explicit return

 the finally clause is executed just before the method
returns.

L4.11

Example: finally 1

 Three methods to exit in various ways.

class FinallyDemo {

//procA prematurely breaks out of the try by throwing an
exception, the finally clause is executed on the way out:

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

} }

L 4.12

Example: finally 2

// procB’s try statement is exited via a return statement,
the finally clause is executed before procB returns:

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

}

}

L 4.13

Example: finally 3

 In procC, the try statement executes normally without

error, however the finally clause is still executed:

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

L 4.14

Example: finally 4

 Demonstration of the three methods:

public static void main(String args[]) {

try {

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

}

L 5.1

Java Built-In Exceptions

 The default java.lang package provides several
exception classes, all sub-classing the

 RuntimeException class.

 Two sets of build-in exception classes:

 1) unchecked exceptions – the compiler does not
check if a method handles or throws there exceptions

 2) checked exceptions – must be included in the
method’s throws clause if the method generates but
does not handle them

L 5.2

Unchecked Built-In Exceptions

 Methods that generate but do not handle
those exceptions need not declare them in the
throws clause:

1) ArithmeticException

2) ArrayIndexOutOfBoundsException

3) ArrayStoreException

4) ClassCastException

5) IllegalStateException

6) IllegalMonitorStateException

7) IllegalArgumentException

L 5.3

8. StringIndexOutOfBounds

9. UnsupportedOperationException

10.SecurityException

11.NumberFormatException

12.NullPointerException

13.NegativeArraySizeException

14. IndexOutOfBoundsException

15. IllegalThreadStateException

L 5.4

Checked Built-In Exceptions

 Methods that generate but do not handle those

exceptions must declare them in the throws clause:

1. NoSuchMethodException NoSuchFieldException

2. InterruptedException

3. InstantiationException

4. IllegalAccessException

5. CloneNotSupportedException

6. ClassNotFoundException

L 6.1

Creating Own Exception

Classes

 Build-in exception classes handle some generic

errors.

 For application-specific errors define your own

exception classes. How? Define a subclass of

Exception:

 class MyException extends Exception { … }

 MyException need not implement anything – its

mere existence in the type system allows to use

its objects as exceptions.

L 6.2

Example: Own Exceptions 1

 A new exception class is defined, with a private detail
variable, a one parameter constructor and an overridden
toString method:

class MyException extends Exception {

private int detail;

MyException(int a) {

detail = a;

}

public String toString() {

return "MyException[" + detail + "]";

}

}

L 6.3

Example: Own Exceptions 2

class ExceptionDemo {

The static compute method throws the MyException

exception whenever its a argument is greater than 10:

static void compute(int a) throws MyException {

System.out.println("Called compute(" + a + ")");

if (a > 10) throw new MyException(a);

System.out.println("Normal exit");

}

L 6.4

Example: Own Exceptions 3

The main method calls compute with two arguments

within a try block that catches the MyException exception:

public static void main(String args[]) {

try {

compute(1);

compute(20);

} catch (MyException e) {

System.out.println("Caught " + e);

}

}

}

L 7.1

Differences between multi threading

and multitasking

Multi-Tasking

 Two kinds of multi-tasking:

 1) process-based multi-tasking

 2) thread-based multi-tasking

 Process-based multi-tasking is about allowing several programs to
execute concurrently, e.g. Java compiler and a text editor.

 Processes are heavyweight tasks:

 1) that require their own address space

 2) inter-process communication is expensive and limited

 3) context-switching from one process to another is expensive

 and limited

L 7.2

Thread-Based Multi-Tasking

 Thread-based multi-tasking is about a single
program executing concurrently

 several tasks e.g. a text editor printing and spell-
checking text.

 Threads are lightweight tasks:

 1) they share the same address space

 2) they cooperatively share the same process

 3) inter-thread communication is inexpensive

 4) context-switching from one thread to another
 is low-cost

 Java multi-tasking is thread-based.

L 7.3

Reasons for Multi-Threading

 Multi-threading enables to write efficient programs that

make the maximum use of the CPU, keeping the idle
time to a minimum.

 There is plenty of idle time for interactive, networked
applications:

 1) the transmission rate of data over a network is much
 slower than the rate at which the computer can
process it

 2) local file system resources can be read and written at
a much slower rate than can be processed by the CPU

 3) of course, user input is much slower than the
computer

L 7.4

Thread Lifecycle

 Thread exist in several states:

1) ready to run

2) running

3) a running thread can be suspended

4) a suspended thread can be resumed

5) a thread can be blocked when waiting for a resource

6) a thread can be terminated

 Once terminated, a thread cannot be resumed.

L 7.5

 Thread Lifecycle

Born

Blocked
Runnable

Dead

stop()

start()

stop()

Active

block on I/O

I/O available

JVM

sleep(500)

wake up

suspend()

resume()

wait

notify

L 7.6

 New state – After the creations of Thread instance the thread is in
this state but before the start() method invocation. At this point, the
thread is considered not alive.

 Runnable (Ready-to-run) state – A thread start its life from
Runnable state. A thread first enters runnable state after the
invoking of start() method but a thread can return to this state after
either running, waiting, sleeping or coming back from blocked state
also. On this state a thread is waiting for a turn on the processor.

 Running state – A thread is in running state that means the thread
is currently executing. There are several ways to enter in Runnable
state but there is only one way to enter in Running state: the
scheduler select a thread from runnable pool.

 Dead state – A thread can be considered dead when its run()
method completes. If any thread comes on this state that means it
cannot ever run again.

 Blocked - A thread can enter in this state because of waiting the
resources that are hold by another thread.

L 8.1

Creating Threads

 To create a new thread a program will:

 1) extend the Thread class, or

 2) implement the Runnable interface

 Thread class encapsulates a thread of

execution.

 The whole Java multithreading environment

is based on the Thread class.

L 8.2

Thread Methods

 Start: a thread by calling start its run method

 Sleep: suspend a thread for a period of time

 Run: entry-point for a thread

 Join: wait for a thread to terminate

 isAlive: determine if a thread is still running

 getPriority: obtain a thread’s priority

 getName: obtain a thread’s name

L 8.3

New Thread: Runnable

 To create a new thread by implementing the Runnable

interface:

 1) create a class that implements the run method
(inside this method, we define the code that constitutes
the new thread):

 public void run()

 2) instantiate a Thread object within that class, a
possible constructor is:

 Thread(Runnable threadOb, String threadName)

 3) call the start method on this object (start calls run):

 void start()

L 8.4

Example: New Thread 1

 A class NewThread that implements Runnable:

class NewThread implements Runnable {

Thread t;

//Creating and starting a new thread. Passing this to the

// Thread constructor – the new thread will call this

// object’s run method:

NewThread() {

t = new Thread(this, "Demo Thread");

System.out.println("Child thread: " + t);

t.start();

}

L 8.5

Example: New Thread 2

//This is the entry point for the newly created thread – a five-iterations

loop

//with a half-second pause between the iterations all within try/catch:

public void run() {

try {

for (int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

L 8.6

Example: New Thread 3

class ThreadDemo {

public static void main(String args[]) {

//A new thread is created as an object of

// NewThread:

new NewThread();

//After calling the NewThread start method,

// control returns here.

L 8.7

Example: New Thread 4

//Both threads (new and main) continue concurrently.

//Here is the loop for the main thread:

try {

for (int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

L 8.8

New Thread: Extend Thread

 The second way to create a new thread:

 1) create a new class that extends Thread

 2) create an instance of that class

 Thread provides both run and start methods:

 1) the extending class must override run

 2) it must also call the start method

L 8.9

Example: New Thread 1

 The new thread class extends Thread:

class NewThread extends Thread {

//Create a new thread by calling the Thread’s

// constructor and start method:

NewThread() {

super("Demo Thread");

System.out.println("Child thread: " + this);

start();

}

8.10

Example: New Thread 2

NewThread overrides the Thread’s run method:

public void run() {

try {

for (int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

L 8.11

Example: New Thread 3

class ExtendThread {

public static void main(String args[]) {

//After a new thread is created:

new NewThread();

//the new and main threads continue

//concurrently…

L 8.12

Example: New Thread 4

//This is the loop of the main thread:

try {

for (int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

L 8.13

Threads: Synchronization

 Multi-threading introduces asynchronous behavior to a
program.

 How to ensure synchronous behavior when we need it?

 For instance, how to prevent two threads from
simultaneously writing and reading the same object?

 Java implementation of monitors:

 1) classes can define so-called synchronized methods

 2) each object has its own implicit monitor that is
automatically entered when one of the object’s synchronized
methods is called

 3) once a thread is inside a synchronized method, no other
thread can call any other synchronized method on the same
object

L 8.14

Thread Synchronization

 Language keyword: synchronized

 Takes out a monitor lock on an object

 Exclusive lock for that thread

 If lock is currently unavailable, thread will

block

L 8.15

Thread Synchronization

 Protects access to code, not to data

 Make data members private

 Synchronize accessor methods

 Puts a “force field” around the locked object

so no other threads can enter

• Actually, it only blocks access to other

synchronizing threads

L 9.1

Daemon Threads

 Any Java thread can be a daemon thread.

 Daemon threads are service providers for other threads running
in the same process as the daemon thread.

 The run() method for a daemon thread is typically an infinite loop
that waits for a service request. When the only remaining threads
in a process are daemon threads, the interpreter exits. This
makes sense because when only daemon threads remain, there
is no other thread for which a daemon thread can provide a
service.

 To specify that a thread is a daemon thread, call the setDaemon
method with the argument true. To determine if a thread is a
daemon thread, use the accessor method isDaemon.

L 9.2

Thread Groups

o Every Java thread is a member of a thread group.

o Thread groups provide a mechanism for collecting multiple threads into a
single object and manipulating those threads all at once, rather than
individually.

o For example, you can start or suspend all the threads within a group with a
single method call.

o Java thread groups are implemented by the “ThreadGroup” class in the
java.lang package.

 The runtime system puts a thread into a thread group during thread
construction.

 When you create a thread, you can either allow the runtime system to put
the new thread in some reasonable default group or you can explicitly set
the new thread's group.

 The thread is a permanent member of whatever thread group it joins upon
its creation--you cannot move a thread to a new group after the thread has
been created

L 9.3

The ThreadGroup Class

 The “ThreadGroup” class manages groups of threads for

Java applications.

 A ThreadGroup can contain any number of threads.

 The threads in a group are generally related in some way,
such as who created them, what function they perform, or
when they should be started and stopped.

 ThreadGroups can contain not only threads but also other
ThreadGroups.

 The top-most thread group in a Java application is the
thread group named main.

 You can create threads and thread groups in the main
group.

 You can also create threads and thread groups in
subgroups of main.

http://java.sun.com/products/jdk/1.1/api/java.lang.ThreadGroup.html

L 9.4

Creating a Thread Explicitly in a

Group

 A thread is a permanent member of whatever thread group it joins when its

created--you cannot move a thread to a new group after the thread has been
created. Thus, if you wish to put your new thread in a thread group other
than the default, you must specify the thread group explicitly when you
create the thread.

 The Thread class has three constructors that let you set a new thread's
group:

 public Thread(ThreadGroup group, Runnable target) public
 Thread(ThreadGroup group, String name)
 public Thread(ThreadGroup group, Runnable target, String name)

 Each of these constructors creates a new thread, initializes it based on the
Runnable and String parameters, and makes the new thread a member of
the specified group.

 For example:

 ThreadGroup myThreadGroup = new ThreadGroup("My Group of Threads");

 Thread myThread = new Thread(myThreadGroup, "a thread for my group");

JAVA PROGRAMMING

UNIT-4

APIs and Versions

• Number one hint for programming with

Java Collections: use the API

– http://java.sun.com/j2se/1.5.0/docs/api/java/uti

l/Collection.html

• Be sure to use the 1.5.0 APIs to get the

version with generics

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

Java Collections Framework

• The Java language API provides many of
the data structures from this class for you.

• It defines a “collection” as “an object that
represents a group of objects”.

• It defines a collections framework as “a
unified architecture for representing and
manipulating collections, allowing them to
be manipulated independent of the details
of their representation.”

Collections Framework (cont)

• Collection Interfaces - Represent different types of collections, such as sets, lists
and maps. These interfaces form the basis of the framework.

• General-purpose Implementations - Primary implementations of the collection
interfaces.

• Legacy Implementations - The collection classes from earlier releases, Vector and
Hashtable, have been retrofitted to implement the collection interfaces.

• Wrapper Implementations - Add functionality, such as synchronization, to other
implementations.

• Convenience Implementations - High-performance "mini-implementations" of the
collection interfaces.

• Abstract Implementations - Partial implementations of the collection interfaces to
facilitate custom implementations.

• Algorithms - Static methods that perform useful functions on collections, such as
sorting a list.

• Infrastructure - Interfaces that provide essential support for the collection interfaces.

• Array Utilities - Utility functions for arrays of primitives and reference objects. Not,
strictly speaking, a part of the Collections Framework, this functionality is being added
to the Java platform at the same time and relies on some of the same infrastructure.

Collection interfaces

• The core collection interfaces encapsulate

different types of collections. They

represent the abstract data types that are

part of the collections framework. They

are interfaces so they do not provide an

implementation!

public interface Collection<E>

extends Iterable<E>

• Collection — the root of the collection hierarchy. A
collection represents a group of objects known as its
elements. The Collection interface is the least common
denominator that all collections implement and is used to
pass collections around and to manipulate them when
maximum generality is desired. Some types of
collections allow duplicate elements, and others do not.
Some are ordered and others are unordered. The Java
platform doesn't provide any direct implementations of
this interface but provides implementations of more
specific subinterfaces, such as Set and List.

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Iterable.html

public interface Collection<E>

extends Iterable<E>
 public interface Collection<E> extends Iterable<E> {

 // Basic operations

 int size();

 boolean isEmpty();

 boolean contains(Object element);

 boolean add(E element); //optional

 boolean remove(Object element); //optional

 Iterator<E> iterator();

 // Bulk operations

 boolean containsAll(Collection<?> c);

 boolean addAll(Collection<? extends E> c); //optional

 boolean removeAll(Collection<?> c); //optional

 boolean retainAll(Collection<?> c); //optional

 void clear(); //optional

 // Array operations

 Object[] toArray();

 <T> T[] toArray(T[] a);

}

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Iterable.html

A note on iterators

• An Iterator is an object that enables you to traverse
through a collection and to remove elements from the
collection selectively, if desired. You get an Iterator
for a collection by calling its iterator() method. The
following is the Iterator interface.

public interface Iterator<E> {

 boolean hasNext();

 E next();

 void remove(); //optional

}

http://java.sun.com/javase/6/docs/api/java/util/Iterator.html

public interface Set<E>

extends Collection<E>

• Set — a collection that cannot contain

duplicate elements. This interface models

the mathematical set abstraction and is

used to represent sets, such as the cards

comprising a poker hand, the courses

making up a student's schedule, or the

processes running on a machine.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

public interface Set<E>

extends Collection<E>
public interface Set<E> extends Collection<E> {

 // Basic operations

 int size();

 boolean isEmpty();

 boolean contains(Object element);

 boolean add(E element); //optional

 boolean remove(Object element); //optional

 Iterator<E> iterator();

 // Bulk operations

 boolean containsAll(Collection<?> c);

 boolean addAll(Collection<? extends E> c); //optional

 boolean removeAll(Collection<?> c); //optional

 boolean retainAll(Collection<?> c); //optional

 void clear(); //optional

 // Array Operations

 Object[] toArray();

 <T> T[] toArray(T[] a);

}

Note: nothing added to Collection interface – except no duplicates allowed

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

public interface List<E>

extends Collection<E>

• List — an ordered collection (sometimes

called a sequence). Lists can contain

duplicate elements. The user of a List

generally has precise control over where

in the list each element is inserted and can

access elements by their integer index

(position). If you've used Vector, you're

familiar with the general flavor of List.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

public interface List<E>

extends Collection<E>
public interface List<E> extends Collection<E> {

 // Positional access

 E get(int index);

 E set(int index, E element); //optional

 boolean add(E element); //optional

 void add(int index, E element); //optional

 E remove(int index); //optional

 boolean addAll(int index,

 Collection<? extends E> c); //optional

 // Search

 int indexOf(Object o);

 int lastIndexOf(Object o);

 // Iteration

 ListIterator<E> listIterator();

 ListIterator<E> listIterator(int index);

 // Range-view

 List<E> subList(int from, int to);

}

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

A note on ListIterators
• The three methods that ListIterator inherits from Iterator (hasNext, next, and remove)

do exactly the same thing in both interfaces. The hasPrevious and the previous
operations are exact analogues of hasNext and next. The former operations refer to
the element before the (implicit) cursor, whereas the latter refer to the element after
the cursor. The previous operation moves the cursor backward, whereas next moves
it forward.

• The nextIndex method returns the index of the element that would be returned by a
subsequent call to next, and previousIndex returns the index of the element that
would be returned by a subsequent call to previous

• The set method overwrites the last element returned by next or previous with the
specified element.

• The add method inserts a new element into the list immediately before the current
cursor position.

public interface ListIterator<E> extends Iterator<E> {

 boolean hasNext();

 E next();

 boolean hasPrevious();

 E previous();

 int nextIndex();

 int previousIndex();

 void remove(); //optional

 void set(E e); //optional

 void add(E e); //optional

}

public interface Queue<E>

extends Collection<E>

• Queue — a collection used to hold

multiple elements prior to processing.

Besides basic Collection operations, a

Queue provides additional insertion,

extraction, and inspection operations.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

public interface Queue<E>

extends Collection<E>

public interface Queue<E> extends

Collection<E> {

 E element(); //throws

 E peek(); //null

 boolean offer(E e); //add - bool

 E remove(); //throws

 E poll(); //null

}

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

public interface Map<K,V>

• Map — an object that maps keys to

values. A Map cannot contain duplicate

keys; each key can map to at most one

value. If you've used Hashtable, you're

already familiar with the basics of Map.

public interface Map<K,V>
public interface Map<K,V> {

 // Basic operations

 V put(K key, V value);

 V get(Object key);

 V remove(Object key);

 boolean containsKey(Object key);

 boolean containsValue(Object value);

 int size();

 boolean isEmpty();

 // Bulk operations

 void putAll(Map<? extends K, ? extends V> m);

 void clear();

 // Collection Views

 public Set<K> keySet();

 public Collection<V> values();

 public Set<Map.Entry<K,V>> entrySet();

 // Interface for entrySet elements

 public interface Entry {

 K getKey();

 V getValue();

 V setValue(V value);

 }

}

public interface SortedSet<E>

extends Set<E>

• SortedSet — a Set that maintains its

elements in ascending order. Several

additional operations are provided to take

advantage of the ordering. Sorted sets are

used for naturally ordered sets, such as

word lists and membership rolls.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Set.html

public interface SortedSet<E>

extends Set<E>

public interface SortedSet<E> extends Set<E> {

 // Range-view

 SortedSet<E> subSet(E fromElement, E toElement);

 SortedSet<E> headSet(E toElement);

 SortedSet<E> tailSet(E fromElement);

 // Endpoints

 E first();

 E last();

 // Comparator access

 Comparator<? super E> comparator();

}

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Set.html

Note on Comparator interface

• Comparator is another interface (in

addition to Comparable) provided by the

Java API which can be used to order

objects.

• You can use this interface to define an

order that is different from the Comparable

(natural) order.

public interface SortedMap<K,V>

extends Map<K,V>

• SortedMap — a Map that maintains its

mappings in ascending key order. This is

the Map analog of SortedSet. Sorted maps

are used for naturally ordered collections

of key/value pairs, such as dictionaries

and telephone directories.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html

public interface SortedMap<K,V>

extends Map<K,V>

public interface SortedMap<K, V> extends Map<K, V>{

 SortedMap<K, V> subMap(K fromKey, K toKey);

 SortedMap<K, V> headMap(K toKey);

 SortedMap<K, V> tailMap(K fromKey);

 K firstKey();

 K lastKey();

 Comparator<? super K> comparator();

}

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html

General-purpose Implementations

Interfaces Implementations

 Hash table Resizable array
Tree

(sorted)
Linked list Hash table + Linked list

Set HashSet
TreeSet

(sorted)
 LinkedHashSet

List ArrayList
LinkedList

Queue

Map HashMap
TreeMap

(sorted)
 LinkedHashMap

Note the naming convention

LinkedList also implements queue and there is a PriorityQueue implementation (implemented with heap)

implementations

• Each of the implementations offers the strengths
and weaknesses of the underlying data
structure.

• What does that mean for:
– Hashtable

– Resizable array

– Tree

– LinkedList

– Hashtable plus LinkedList

• Think about these tradeoffs when selecting
the implementation!

Choosing the datatype
• When you declare a Set, List or Map, you should use Set, List or Map

interface as the datatype instead of the implementing class. That will allow
you to change the implementation by changing a single line of code!

import java.util.*;

public class Test {

 public static void main(String[] args) {

 Set<String> ss = new LinkedHashSet<String>();

 for (int i = 0; i < args.length; i++)

 ss.add(args[i]);

 Iterator i = ss.iterator();

 while (i.hasNext())

 System.out.println(i.next());

 }

}

import java.util.*;

public class Test {

 public static void main(String[] args)

 {

 //map to hold student grades

 Map<String, Integer> theMap = new HashMap<String, Integer>();

 theMap.put("Korth, Evan", 100);

 theMap.put("Plant, Robert", 90);

 theMap.put("Coyne, Wayne", 92);

 theMap.put("Franti, Michael", 98);

 theMap.put("Lennon, John", 88);

 System.out.println(theMap);

 System.out.println("--------------------------------------");

 System.out.println(theMap.get("Korth, Evan"));

 System.out.println(theMap.get("Franti, Michael"));

 }

}

Other implementations in the API
• Wrapper implementations delegate all their real

work to a specified collection but add (or
remove) extra functionality on top of what the
collection offers.
– Synchronization Wrappers

– Unmodifiable Wrappers

• Convenience implementations are mini-
implementations that can be more convenient
and more efficient than general-purpose
implementations when you don't need their full
power
– List View of an Array

– Immutable Multiple-Copy List

– Immutable Singleton Set

– Empty Set, List, and Map Constants

Set

SortedSet

AbstractSet

Collection

TreeSet

HashSet

List AbstractList

AbstractSequentialList

ArrayList

LinkedList

AbstractCollection

Vector Stack

LinkedHashSet

Interfaces Abstract Classes Concrete Classes

Copyright: Liang

SortedMap

Map

TreeMap

HashMap AbstractMap
LinkedHashMap

Interfaces Abstract Classes Concrete Classes

Making your own implementations

• Most of the time you can use the

implementations provided for you in the

Java API.

• In case the existing implementations do

not satisfy your needs, you can write your

own by extending the abstract classes

provided in the collections framework.

algorithms

• The collections framework also provides polymorphic
versions of algorithms you can run on collections.
– Sorting

– Shuffling

– Routine Data Manipulation

• Reverse

• Fill copy

• etc.

– Searching

• Binary Search

– Composition

• Frequency

• Disjoint

– Finding extreme values

• Min

• Max

31

What is JDBC?

• “An API that lets you access virtually any tabular data

source from the Java programming language”

• JDBC Data Access API – JDBC Technology Homepage

– What’s an API?

• See J2SE documentation

– What’s a tabular data source?

• “… access virtually any data source, from relational

databases to spreadsheets and flat files.”

– JDBC Documentation

• We’ll focus on accessing Oracle databases

32

General Architecture

• What design pattern is

implied in this

architecture?

• What does it buy for us?

• Why is this architecture

also multi-tiered?

33

34

Basic steps to use

a database in Java
• 1.Establish a connection

• 2.Create JDBC Statements

• 3.Execute SQL Statements

• 4.GET ResultSet

• 5.Close connections

35

1. Establish a connection

• import java.sql.*;

• Load the vendor specific driver
– Class.forName("oracle.jdbc.driver.OracleDriver");

• What do you think this statement does, and how?

• Dynamically loads a driver class, for Oracle database

• Make the connection

– Connection con = DriverManager.getConnection(
"jdbc:oracle:thin:@oracle-prod:1521:OPROD",
username, passwd);

• What do you think this statement does?

• Establishes connection to database by obtaining

a Connection object

36

2. Create JDBC statement(s)

• Statement stmt = con.createStatement() ;
• Creates a Statement object for sending SQL statements

to the database

37

Executing SQL Statements

• String createLehigh = "Create table Lehigh " +

 "(SSN Integer not null, Name VARCHAR(32), " +

"Marks Integer)";

 stmt.executeUpdate(createLehigh);

 //What does this statement do?

• String insertLehigh = "Insert into Lehigh values“
+ "(123456789,abc,100)";

 stmt.executeUpdate(insertLehigh);

38

Get ResultSet

String queryLehigh = "select * from Lehigh";

ResultSet rs = Stmt.executeQuery(queryLehigh);

//What does this statement do?

while (rs.next()) {

 int ssn = rs.getInt("SSN");

 String name = rs.getString("NAME");

 int marks = rs.getInt("MARKS");

}

39

Close connection

• stmt.close();

• con.close();

40

Transactions and JDBC

• JDBC allows SQL statements to be grouped together into a
single transaction

• Transaction control is performed by the Connection object,
default mode is auto-commit, I.e., each sql statement is treated
as a transaction

• We can turn off the auto-commit mode with
con.setAutoCommit(false);

• And turn it back on with con.setAutoCommit(true);

• Once auto-commit is off, no SQL statement will be committed
until an explicit is invoked con.commit();

• At this point all changes done by the SQL statements will be

made permanent in the database.

41

Handling Errors with Exceptions

• Programs should recover and leave the database in

a consistent state.

• If a statement in the try block throws an exception or

warning, it can be caught in one of the

corresponding catch statements

• How might a finally {…} block be helpful here?

• E.g., you could rollback your transaction in a

catch { …} block or close database connection and

free database related resources in finally {…} block

42

Another way to access database

(JDBC-ODBC)

What’s a bit different

about this

architecture?

Why add yet

another layer?

43

Sample program

import java.sql.*;

class Test {

 public static void main(String[] args) {

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); //dynamic loading of driver

 String filename = "c:/db1.mdb"; //Location of an Access database

 String database = "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=";

 database+= filename.trim() + ";DriverID=22;READONLY=true}"; //add on to end

 Connection con = DriverManager.getConnection(database ,"","");

 Statement s = con.createStatement();

 s.execute("create table TEST12345 (firstcolumn integer)");

 s.execute("insert into TEST12345 values(1)");

 s.execute("select firstcolumn from TEST12345");

44

Sample program(cont)

 ResultSet rs = s.getResultSet();

 if (rs != null) // if rs == null, then there is no ResultSet to view

 while (rs.next()) // this will step through our data row-by-row

 { /* the next line will get the first column in our current row's ResultSet

 as a String (getString(columnNumber)) and output it to the screen */

 System.out.println("Data from column_name: " + rs.getString(1));

 }

 s.close(); // close Statement to let the database know we're done with it

 con.close(); //close connection

 }

 catch (Exception err) { System.out.println("ERROR: " + err); }

 }

}

45

Mapping types JDBC - Java

46

JDBC 2 – Scrollable Result Set

…

Statement stmt =

con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

String query = “select students from class where type=‘not sleeping’ “;

ResultSet rs = stmt.executeQuery(query);

rs.previous(); / / go back in the RS (not possible in JDBC 1…)

rs.relative(-5); / / go 5 records back

rs.relative(7); / / go 7 records forward

rs.absolute(100); / / go to 100th record

…

47

JDBC 2 – Updateable

ResultSet
…
Statement stmt =
con.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
String query = " select students, grade from class

 where type=‘really listening this presentation’ “;
ResultSet rs = stmt.executeQuery(query);
…
while (rs.next())
{
 int grade = rs.getInt(“grade”);
 rs.updateInt(“grade”, grade+10);
 rs.updateRow();
}

48

Metadata from DB

• A Connection's database is able
to provide schema information
describing its tables,
its supported SQL grammar,
its stored procedures
the capabilities of this connection, and so
on
– What is a stored procedure?

– Group of SQL statements that form a logical
unit and perform a particular task

This information is made available through
a DatabaseMetaData object.

49

Metadata from DB - example

…
Connection con = …. ;

DatabaseMetaData dbmd = con.getMetaData();

String catalog = null;
String schema = null;
String table = “sys%”;
String[] types = null;

ResultSet rs =
 dbmd.getTables(catalog , schema , table , types);
…

50

JDBC – Metadata from RS

public static void printRS(ResultSet rs) throws SQLException

{

 ResultSetMetaData md = rs.getMetaData();

 // get number of columns

 int nCols = md.getColumnCount();

 // print column names

 for(int i=1; i < nCols; ++i)

 System.out.print(md.getColumnName(i)+",");

 / / output resultset

 while (rs.next())

 { for(int i=1; i < nCols; ++i)

 System.out.print(rs.getString(i)+",");

 System.out.println(rs.getString(nCols));

 }

}

51

JDBC and beyond

• (JNDI) Java Naming and Directory Interface
– API for network-wide sharing of information about users,

machines, networks, services, and applications
– Preserves Java’s object model

• (JDO) Java Data Object
– Models persistence of objects, using RDBMS as repository

– Save, load objects from RDBMS

• (SQLJ) Embedded SQL in Java
– Standardized and optimized by Sybase, Oracle and IBM

– Java extended with directives: # sql

– SQL routines can invoke Java methods

– Maps SQL types to Java classes

53

JDBC references

• JDBC Data Access API – JDBC Technology Homepage

– http://java.sun.com/products/jdbc/index.html

• JDBC Database Access – The Java Tutorial

– http://java.sun.com/docs/books/tutorial/jdbc/index.html

• JDBC Documentation

– http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/index.html

• java.sql package
– http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html

• JDBC Technology Guide: Getting Started
– http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/GettingStartedTOC.fm.html

• JDBC API Tutorial and Reference (book)

– http://java.sun.com/docs/books/jdbc/

http://java.sun.com/products/jdbc/index.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/index.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/GettingStartedTOC.fm.html
http://java.sun.com/docs/books/jdbc/

54

JDBC

• JDBC Data Access API – JDBC Technology Homepage

– http://java.sun.com/products/jdbc/index.html

• JDBC Database Access – The Java Tutorial

– http://java.sun.com/docs/books/tutorial/jdbc/index.html

• JDBC Documentation

– http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/index.html

• java.sql package
– http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html

• JDBC Technology Guide: Getting Started
– http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/GettingStartedTOC.fm.html

• JDBC API Tutorial and Reference (book)

– http://java.sun.com/docs/books/jdbc/

http://java.sun.com/products/jdbc/index.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/index.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/guide/jdbc/getstart/GettingStartedTOC.fm.html
http://java.sun.com/docs/books/jdbc/

JAVA PROGRAMMING

UNIT-V

L 1.1

Event handling

• For the user to interact with a GUI, the

underlying operating system must support event

handling.

1) operating systems constantly monitor events such as

keystrokes, mouse clicks, voice command, etc.

2) operating systems sort out these events and report

them to the appropriate application programs

3) each application program then decides what to do in

response to these events

L 1.2

Events

• An event is an object that describes a state
change in a source.

• It can be generated as a consequence of a
person interacting with the elements in a
graphical user interface.

• Some of the activities that cause events to be
generated are pressing a button, entering a
character via the keyboard, selecting an item in
a list, and clicking the mouse.

L 1.3

• Events may also occur that are not directly
caused by interactions with a user interface.

• For example, an event may be generated when
a timer expires, a counter exceeds a value, a
software or hardware failure occurs, or an
operation is completed.

• Events can be defined as needed and
appropriate by application.

L 1.4

Event sources

• A source is an object that generates an event.

• This occurs when the internal state of that object changes in some
way.

• Sources may generate more than one type of event.

• A source must register listeners in order for the listeners to receive
notifications about a specific type of event.

• Each type of event has its own registration method.

• General form is:

 public void addTypeListener(TypeListener el)

 Here, Type is the name of the event and el is a reference to the
event listener.

• For example,

 1. The method that registers a keyboard event listener is called
 addKeyListener().

 2. The method that registers a mouse motion listener is called
 addMouseMotionListener().

L 1.5

• When an event occurs, all registered listeners
are notified and receive a copy of the event
object. This is known as multicasting the event.

• In all cases, notifications are sent only to
listeners that register to receive them.

• Some sources may allow only one listener to
register. The general form is:

 public void addTypeListener(TypeListener el)
throws java.util.TooManyListenersException

 Here Type is the name of the event and el is a
reference to the event listener.

• When such an event occurs, the registered
listener is notified. This is known as unicasting
the event.

L 1.6

• A source must also provide a method that allows a
listener to unregister an interest in a specific type
of event.

• The general form is:

 public void removeTypeListener(TypeListener el)

 Here, Type is the name of the event and el is a
reference to the event listener.

• For example, to remove a keyboard listener, you
would call removeKeyListener().

• The methods that add or remove listeners are
provided by the source that generates events.

• For example, the Component class provides
methods to add and remove keyboard and mouse
event listeners.

L 1.7

Event classes

• The Event classes that represent events are at the core
of Java's event handling mechanism.

• Super class of the Java event class hierarchy is
EventObject, which is in java.util. for all events.

• Constructor is :

 EventObject(Object src)
Here, src is the object that generates this event.

• EventObject contains two methods: getSource() and
toString().

• 1. The getSource() method returns the source of the
event. General form is : Object getSource()

• 2. The toString() returns the string equivalent of the
event.

L 1.8

• EventObject is a superclass of all events.

• AWTEvent is a superclass of all AWT

events that are handled by the delegation

event model.

• The package java.awt.event defines

several types of events that are generated

by various user interface elements.

L 1.9

 Event Classes in java.awt.event

• ActionEvent: Generated when a button is pressed, a list
item is double clicked, or a menu item is selected.

• AdjustmentEvent: Generated when a scroll bar is
manipulated.

• ComponentEvent: Generated when a component is
hidden, moved, resized, or becomes visible.

• ContainerEvent: Generated when a component is added
to or removed from a container.

• FocusEvent: Generated when a component gains or
loses keyboard focus.

L 1.10

• InputEvent: Abstract super class for all component input
event classes.

• ItemEvent: Generated when a check box or list item is
clicked; also

• occurs when a choice selection is made or a checkable
menu item is selected or deselected.

• KeyEvent: Generated when input is received from the
keyboard.

• MouseEvent: Generated when the mouse is dragged,
moved, clicked, pressed, or released; also generated
when the mouse enters or exits a component.

• TextEvent: Generated when the value of a text area or
text field is changed.

• WindowEvent: Generated when a window is activated,
closed, deactivated, deiconified, iconified, opened, or
quit.

L 2.1

Event Listeners

• A listener is an object that is notified when an event occurs.

• Event has two major requirements.

1. It must have been registered with one or more sources to
receive

 notifications about specific types of events.

 2. It must implement methods to receive and process these

 notifications.

• The methods that receive and process events are defined in a set of
interfaces found in java.awt.event.

• For example, the MouseMotionListener interface defines two
methods to receive notifications when the mouse is dragged or
moved.

• Any object may receive and process one or both of these events if it
provides an implementation of this interface.

L 2.2

Delegation event model

• The modern approach to handling events is based on the delegation
event model, which defines standard and consistent mechanisms to
generate and process events.

• Its concept is quite simple: a source generates an event and sends it
to one or more listeners.

• In this scheme, the listener simply waits until it receives an event.

• Once received, the listener processes the event and then returns.

• The advantage of this design is that the application logic that
processes events is cleanly separated from the user interface logic
that generates those events.

• A user interface element is able to "delegate“ the processing of an
event to a separate piece of code.

L 2.3

• In the delegation event model, listeners must register with a source
in order to receive an event notification. This provides an important
benefit: notifications are sent only to listeners that want to receive
them.

• This is a more efficient way to handle events than the design used
by the old Java 1.0 approach. Previously, an event was propagated
up the containment hierarchy until it was handled by a component.

• This required components to receive events that they did not
process, and it wasted valuable time.The delegation event model
eliminates this overhead.

 Note

• Java also allows you to process events without using the delegation
event model.

• This can be done by extending an AWT component.

L 3.1

Handling mouse events

• mouse events can be handled by implementing the
MouseListener and the MouseMotionListener
interfaces.

• MouseListener Interface defines five methods. The
general forms of these methods are:

1. void mouseClicked(MouseEvent me)

2. void mouseEntered(MouseEvent me)

3. void mouseExited(MouseEvent me)

4. void mousePressed(MouseEvent me)

5. void mouseReleased(MouseEvent me)

• MouseMotionListener Interface. This interface defines
two methods. Their general forms are :

1. void mouseDragged(MouseEvent me)

2. void mouseMoved(MouseEvent me)

L 3.2

Handling keyboard events

• Keyboard events, can be handled by implementing the

KeyListener interface.

• KeyListner interface defines three methods. The general forms of

these methods are :

1. void keyPressed(KeyEvent ke)

2. void keyReleased(KeyEvent ke)

3. void keyTyped(KeyEvent ke)

• To implement keyboard events implementation to the above

methods is needed.

L 3.3

Adapter classes

• Java provides a special feature, called an adapter class,
that can simplify the creation of event handlers.

• An adapter class provides an empty implementation of
all methods in an event listener interface.

• Adapter classes are useful when you want to receive
and process only some of the events that are handled by
a particular event listener interface.

• You can define a new class to act as an event listener by
extending one of the adapter classes and implementing
only those events in which you are interested.

L 3.4

• adapter classes in java.awt.event are.

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

L 3.5

Inner classes

• Inner classes, which allow one class to be defined within
another.

• An inner class is a non-static nested class. It has access
to all of the variables and methods of its outer class and
may refer to them directly in the same way that other
non-static members of the outer class do.

• An inner class is fully within the scope of its enclosing
class.

• an inner class has access to all of the members of its
enclosing class, but the reverse is not true.

• Members of the inner class are known only within the
scope of the inner class and may not be used by the
outer class

L 4.1

The AWT class hierarchy

• The AWT classes are contained in the java.awt
package. It is one of Java's largest packages. some of
the AWT classes.

• AWT Classes
1. AWTEvent:Encapsulates AWT events.

2. AWTEventMulticaster: Dispatches events to multiple listeners.

3. BorderLayout: The border layout manager. Border layouts use
five components: North, South, East, West, and Center.

4. Button: Creates a push button control.

5. Canvas: A blank, semantics-free window.

6. CardLayout: The card layout manager. Card layouts emulate
index cards. Only the one on top is showing.

L 4.2

7. Checkbox: Creates a check box control.

8. CheckboxGroup: Creates a group of check box controls.

9. CheckboxMenuItem: Creates an on/off menu item.

10.Choice: Creates a pop-up list.

11.Color: Manages colors in a portable, platform-independent fashion.

12.Component: An abstract super class for various AWT components.

13.Container: A subclass of Component that can hold other
components.

14.Cursor: Encapsulates a bitmapped cursor.

15.Dialog: Creates a dialog window.

16.Dimension: Specifies the dimensions of an object. The width is
 stored in width, and the height is stored in height.

17.Event: Encapsulates events.

18.EventQueue: Queues events.

19.FileDialog: Creates a window from which a file can be selected.

20.FlowLayout: The flow layout manager. Flow layout positions
 components left to right, top to bottom.

L 4.3

21.Font: Encapsulates a type font.

22.FontMetrics: Encapsulates various information related to a font. This
 information helps you display text in a window.

23.Frame: Creates a standard window that has a title bar, resize
 corners, and a menu bar.

24.Graphics: Encapsulates the graphics context. This context is used
 by various output methods to display output in a window.

25.GraphicsDevice: Describes a graphics device such as a screen or
 printer.

26.GraphicsEnvironment: Describes the collection of available Font
 and GraphicsDevice objects.

27.GridBagConstraints: Defines various constraints relating to the
 GridBagLayout class.

28.GridBagLayout: The grid bag layout manager. Grid bag layout
 displays components subject to the constraints
 specified by GridBagConstraints.

29.GridLayout: The grid layout manager. Grid layout displays
 components i n a two-dimensional grid.

L 4.4

30. Scrollbar: Creates a scroll bar control.

31. ScrollPane: A container that provides horizontal and/or
 vertical scrollbars for another component.

32. SystemColor: Contains the colors of GUI widgets such
 as windows, scrollbars, text, and others.

33. TextArea: Creates a multiline edit control.

34. TextComponent: A super class for TextArea and
 TextField.

35. TextField: Creates a single-line edit control.

36. Toolkit: Abstract class implemented by the AWT.

37. Window: Creates a window with no frame, no menu
 bar, and no title.

L 5.1

user interface components

• Labels: Creates a label that displays a string.

• A label is an object of type Label, and it contains a string, which it
displays.

• Labels are passive controls that do not support any interaction with
the user.

• Label defines the following constructors:

1. Label()

2. Label(String str)

3. Label(String str, int how)

• The first version creates a blank label.

• The second version creates a label that contains the string specified
by str. This string is left-justified.

• The third version creates a label that contains the string specified by
str using the alignment specified by how. The value of how must be
one of these three constants: Label.LEFT, Label.RIGHT, or
Label.CENTER.

L 5.2

• Set or change the text in a label is done by using the setText() method.

• Obtain the current label by calling getText().

• These methods are shown here:

void setText(String str)

String getText()

• For setText(), str specifies the new label. For getText(), the current label
is returned.

• To set the alignment of the string within the label by calling setAlignment(
).

• To obtain the current alignment, call getAlignment().

• The methods are as follows:

void setAlignment(int how)

int getAlignment()

Label creation: Label one = new Label("One");

L 5.3

 button

• The most widely used control is the push button.

• A push button is a component that contains a label and that generates an
event when it is pressed.

• Push buttons are objects of type Button. Button defines these two
constructors:

 Button()

 Button(String str)

• The first version creates an empty button. The second creates a button that
contains str as a label.

• After a button has been created, you can set its label by calling setLabel().

• You can retrieve its label by calling getLabel().

• These methods are as follows:

void setLabel(String str)

String getLabel()

Here, str becomes the new label for the button.

Button creation: Button yes = new Button("Yes");

L 5.4

 canvas

• It is not part of the hierarchy for applet or frame windows

• Canvas encapsulates a blank window upon which you
can draw.

• Canvas creation:

 Canvas c = new Canvas();

 Image test = c.createImage(200, 100);

• This creates an instance of Canvas and then calls the

 createImage() method to actually make an Image
object.

 At this point, the image is blank.

L 5.5

scrollbars

• Scrollbar generates adjustment events when the scroll bar is
manipulated.

• Scrollbar creates a scroll bar control.

• Scroll bars are used to select continuous values between a specified
minimum and maximum.

• Scroll bars may be oriented horizontally or vertically.

• A scroll bar is actually a composite of several individual parts.

• Each end has an arrow that you can click to move the current value
of the scroll bar one unit in the direction of the arrow.

• The current value of the scroll bar relative to its minimum and
maximum values is indicated by the slider box (or thumb) for the
scroll bar.

• The slider box can be dragged by the user to a new position. The
scroll bar will then reflect this value.

L 5.6

• Scrollbar defines the following constructors:
Scrollbar()

Scrollbar(int style)

Scrollbar(int style, int initialValue, int thumbSize, int min, int max)

• The first form creates a vertical scroll bar.

• The second and third forms allow you to specify the orientation of
the scroll bar. If style is Scrollbar.VERTICAL, a vertical scroll bar is
created. If style is Scrollbar.HORIZONTAL, the scroll bar is
horizontal.

• In the third form of the constructor, the initial value of the scroll bar is
passed in initialValue.

• The number of units represented by the height of the thumb is
passed in thumbSize.

• The minimum and maximum values for the scroll bar are specified
by min and max.

• vertSB = new Scrollbar(Scrollbar.VERTICAL, 0, 1, 0, height);

• horzSB = new Scrollbar(Scrollbar.HORIZONTAL, 0, 1, 0, width);

L 5.7

text

 • Text is created by Using a TextField class

• The TextField class implements a single-line text-entry area, usually
called an edit

• control.

• Text fields allow the user to enter strings and to edit the text using
the arrow

• keys, cut and paste keys, and mouse selections.

• TextField is a subclass of TextComponent. TextField defines the
following constructors:

TextField()

TextField(int numChars)

TextField(String str)

TextField(String str, int numChars)

L 5.8

• The first version creates a default text field.

• The second form creates a text field that is numChars characters
wide.

• The third form initializes the text field with the string contained in str.

• The fourth form initializes a text field and sets its width.

• TextField (and its superclass TextComponent) provides several
methods that allow you to utilize a text field.

• To obtain the string currently contained in the text field, call
getText().

• To set the text, call setText(). These methods are as follows:

String getText()

void setText(String str)

Here, str is the new string.

L 6.1

components

• At the top of the AWT hierarchy is the Component class.

• Component is an abstract class that encapsulates all of
the attributes of a visual component.

• All user interface elements that are displayed on the
screen and that interact with the user are subclasses of
Component.

• It defines public methods that are responsible for
managing events, such as mouse and keyboard input,
positioning and sizing the window, and repainting.

• A Component object is responsible for remembering the
current foreground and background colors and the
currently selected text font.

L 6.2

• To add components

 Component add(Component compObj)

 Here, compObj is an instance of the control that you
want to add. A reference to compObj is returned.

 Once a control has been added, it will automatically be
visible whenever its parent window is displayed.

• To remove a control from a window when the control is
no longer needed call remove().

• This method is also defined by Container. It has this
general form:

 void remove(Component obj)

 Here, obj is a reference to the control you want to
remove. You can remove all controls by calling
removeAll().

L 6.3

check box,

• A check box is a control that is used to turn an option on
or off. It consists of a small box that can either contain a
check mark or not.

• There is a label associated with each check box that
describes what option the box represents.

• You can change the state of a check box by clicking on
it.

• Check boxes can be used individually or as part of a
group.

• Checkboxes are objects of the Checkbox class.

L 6.4

• Checkbox supports these constructors:

1.Checkbox()

2.Checkbox(String str)

3.Checkbox(String str, boolean on)

4.Checkbox(String str, boolean on, CheckboxGroup cbGroup)

5.Checkbox(String str, CheckboxGroup cbGroup, boolean on)

• The first form creates a check box whose label is initially blank. The
state of the check box is unchecked.

• The second form creates a check box whose label is specified by
str. The state of the check box is unchecked.

• The third form allows you to set the initial state of the check box. If
on is true, the check box is initially checked; otherwise, it is cleared.

• The fourth and fifth forms create a check box whose label is
specified by str and whose group is specified by cbGroup. If this
check box is not part of a group, then cbGroup must be null. (Check
box groups are described in the next section.) The value of on
determines the initial state of the check box.

L 6.5

• To retrieve the current state of a check box, call getState().

• To set its state, call setState().

• To obtain the current label associated with a check box by calling
getLabel().

• To set the label, call setLabel().

• These methods are as follows:

boolean getState()

void setState(boolean on)

String getLabel()

void setLabel(String str)

Here, if on is true, the box is checked. If it is false, the box is
cleared.

Checkbox creation:

 CheckBox Win98 = new Checkbox("Windows 98", null, true);

L 6.6

check box groups
• It is possible to create a set of mutually exclusive check boxes in which one

and only one check box in the group can be checked at any one time.

• These check boxes are oftenccalled radio buttons.

• To create a set of mutually exclusive check boxes, you must first define the
group to which they will belong and then specify that group when you
construct the check boxes.

• Check box groups are objects of type CheckboxGroup. Only the default
constructor is defined, which creates an empty group.

• To determine which check box in a group is currently selected by calling
getSelectedCheckbox().

• To set a check box by calling setSelectedCheckbox().

• These methods are as follows:

Checkbox getSelectedCheckbox()

void setSelectedCheckbox(Checkbox which)

Here, which is the check box that you want to be selected. The previously
selected checkbox will be turned off.

– CheckboxGroup cbg = new CheckboxGroup();

– Win98 = new Checkbox("Windows 98", cbg, true);

– winNT = new Checkbox("Windows NT", cbg, false);

L 6.7

choices

• The Choice class is used to create a pop-up list of items from which
the user may choose.

• A Choice control is a form of menu.

• Choice only defines the default constructor, which creates an empty
list.

• To add a selection to the list, call addItem() or add().

void addItem(String name)

void add(String name)

• Here, name is the name of the item being added.

• Items are added to the list in the order to determine which item is
currently selected, you may call either getSelectedItem() or
getSelectedIndex().

 String getSelectedItem()

 int getSelectedIndex()

L 7.1

lists

• The List class provides a compact, multiple-choice, scrolling
selection list.

• List object can be constructed to show any number of choices in the
visible window.

• It can also be created to allow multiple selections. List provides
these constructors:

List()

List(int numRows)

List(int numRows, boolean multipleSelect)

• To add a selection to the list, call add(). It has the following two
forms:

void add(String name)

void add(String name, int index)

• Ex: List os = new List(4, true);

L 7.2

panels

• The Panel class is a concrete subclass of Container.

• It doesn't add any new methods; it simply implements Container.

• A Panel may be thought of as a recursively nestable, concrete
screen component. Panel is the superclass for Applet.

• When screen output is directed to an applet, it is drawn on the
surface of a Panel object.

• Panel is a window that does not contain a title bar, menu bar, or
border.

• Components can be added to a Panel object by its add() method
(inherited from Container). Once these components have been
added, you can position and resize them manually using the
setLocation(), setSize(), or setBounds() methods defined by
Component.

• Ex: Panel osCards = new Panel();

 CardLayout cardLO = new CardLayout();

 osCards.setLayout(cardLO);

L 7.3

scrollpane

• A scroll pane is a component that presents a
rectangular area in which a component may be
viewed.

• Horizontal and/or vertical scroll bars may be
provided if necessary.

• constants are defined by the
ScrollPaneConstants interface.

1. HORIZONTAL_SCROLLBAR_ALWAYS

2. HORIZONTAL_SCROLLBAR_AS_NEEDED

3. VERTICAL_SCROLLBAR_ALWAYS

4. VERTICAL_SCROLLBAR_AS_NEEDED

L 7.4

dialogs

• Dialog class creates a dialog window.

• constructors are :

 Dialog(Frame parentWindow, boolean mode)

 Dialog(Frame parentWindow, String title, boolean mode)

• The dialog box allows you to choose a method that should be

invoked when the button is clicked.

• Ex:

 Font f = new Font("Dialog", Font.PLAIN, 12);

L 8.1

menubar

• MenuBar class creates a menu bar.

• A top-level window can have a menu bar associated with
it. A menu bar displays a list of top-level menu choices.
Each choice is associated with a drop-down menu.

• To create a menu bar, first create an instance of
MenuBar.

• This class only defines the default constructor. Next,
create instances of Menu that will define the selections
displayed on the bar.

• Following are the constructors for Menu:
Menu()

Menu(String optionName)

Menu(String optionName, boolean removable)

L 8.2

• Once you have created a menu item, you must
add the item to a Menu object by using

 MenuItem add(MenuItem item)

• Here, item is the item being added. Items are
added to a menu in the order in which the calls
to add() take place.

• Once you have added all items to a Menu
object, you can add that object to the menu bar
by using this version of add() defined by
MenuBar:

• Menu add(Menu menu)

L 8.3

Graphics
• The AWT supports a rich assortment of graphics methods.

• All graphics are drawn relative to a window.

• A graphics context is encapsulated by the Graphics class

• It is passed to an applet when one of its various methods, such as
paint() or update(), is called.

• It is returned by the getGraphics() method of Component.

• The Graphics class defines a number of drawing functions. Each
shape can be drawn edge-only or filled.

• Objects are drawn and filled in the currently selected graphics color,
which is black by default.

• When a graphics object is drawn that exceeds the dimensions of the
window, output is automatically clipped

• Ex:

Public void paint(Graphics g)

{

G.drawString(“welcome”,20,20);

}

L 9.1

Layout manager

• A layout manager automatically arranges your controls within a
window by using some type of algorithm.

• it is very tedious to manually lay out a large number of components
and sometimes the width and height information is not yet available
when you need to arrange some control, because the native toolkit
components haven't been realized.

• Each Container object has a layout manager associated with it.

• A layout manager is an instance of any class that implements the
LayoutManager interface.

• The layout manager is set by the setLayout() method. If no call to
setLayout() is made, then the default layout manager is used.

• Whenever a container is resized (or sized for the first time), the
layout manager is used to position each of the components within it.

L 9.2

Layout manager types

Layout manager class defines the

following types of layout managers

• Boarder Layout

• Grid Layout

• Flow Layout

• Card Layout

• GridBag Layout

L 9.3

Boarder layout

• The BorderLayout class implements a common layout style for top-
level windows. It has four narrow, fixed-width components at the
edges and one large area in the center.

• The four sides are referred to as north, south, east, and west. The
middle area is called the center.

• The constructors defined by BorderLayout:

 BorderLayout()

 BorderLayout(int horz, int vert)

• BorderLayout defines the following constants that specify the
regions:

BorderLayout.CENTER

B orderLayout.SOUTH

BorderLayout.EAST

B orderLayout.WEST

BorderLayout.NORTH

• Components can be added by

 void add(Component compObj, Object region);

L 9.4

 Grid layout

• GridLayout lays out components in a two-dimensional grid. When
you instantiate a

• GridLayout, you define the number of rows and columns. The
constructors are

GridLayout()

GridLayout(int numRows, int numColumns)

GridLayout(int numRows, int numColumns, int horz, int vert)

• The first form creates a single-column grid layout.

• The second form creates a grid layout

• with the specified number of rows and columns.

• The third form allows you to specify the horizontal and vertical space
left between components in horz and vert, respectively.

• Either numRows or numColumns can be zero. Specifying numRows
as zero allows for unlimited-length columns. Specifying
numColumns as zero allows for unlimited-lengthrows.

L 9.5

Flow layout

• FlowLayout is the default layout manager.

• Components are laid out from the upper-left corner, left to right and top to
bottom. When no more components fit on a line, the next one appears on
the next line. A small space is left between each component, above and
below, as well as left and right.

• The constructors are

FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

• The first form creates the default layout, which centers components and
leaves five pixels of space between each component.

• The second form allows to specify how each line is aligned. Valid values for
are:

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

 These values specify left, center, and right alignment, respectively.

• The third form allows to specify the horizontal and vertical space left
between components in horz and vert, respectively

L 9.6

Card layout

• The CardLayout class is unique among the other layout managers in that it
stores several different layouts.

• Each layout can be thought of as being on a separate index card in a deck
that can be shuffled so that any card is on top at a given time.

• CardLayout provides these two constructors:

CardLayout()

CardLayout(int horz, int vert)

• The cards are held in an object of type Panel. This panel must have
CardLayout selected as its layout manager.

• Cards are added to panel using

 void add(Component panelObj, Object name);

• methods defined by CardLayout:

void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)

void show(Container deck, String cardName)

L 9.7

 GridBag Layout

• The Grid bag layout displays components subject to the
constraints specified by GridBagConstraints.

• GridLayout lays out components in a two-dimensional
grid.

• The constructors are

GridLayout()

GridLayout(int numRows, int numColumns)

GridLayout(int numRows, int numColumns, int horz,
int vert)

L 1.1

Concepts of Applets

• Applets are small applications that are accessed

on an Internet server, transported over the

Internet, automatically installed, and run as part

of a Web document.

• After an applet arrives on the client, it has limited

access to resources, so that it can produce an

arbitrary multimedia user interface and run

complex computations without introducing the

risk of viruses or breaching data integrity.

L 1.2

• applets – Java program that runs within a Java-enabled

browser, invoked through a “applet” reference on a web

page, dynamically downloaded to the client computer

import java.awt.*;

import java.applet.*;

public class SimpleApplet extends Applet {

public void paint(Graphics g) {

g.drawString("A Simple Applet", 20, 20);

}

}

L 1.3

• There are two ways to run an applet:

1. Executing the applet within a Java-compatible

 Web browser, such as NetscapeNavigator.

2. Using an applet viewer, such as the standard JDK tool,
appletviewer.

• An appletviewer executes your applet in a window. This
is generally the fastest and easiest way to test an
applet.

• To execute an applet in a Web browser, you need to
write a short HTML text file that contains the
appropriate APPLET tag.

 <applet code="SimpleApplet" width=200 height=60>

 </applet>

L 1.4

Differences between applets and applications

• Java can be used to create two types of programs:
applications and applets.

• An application is a program that runs on your computer,
under the operating system of that Computer(i.e an
application created by Java is more or less like one
created using C or C++).

• When used to create applications, Java is not much
different from any other computer language.

• An applet is an application designed to be transmitted
over the Internet and executed by a Java-compatible
Web browser.

• An applet is actually a tiny Java program, dynamically
downloaded across the network, just like an image,
sound file, or video clip.

L 1.5

• The important difference is that an applet is an intelligent

program, not just an animation or media file(i.e an

applet is a program that can react to user input and

dynamically change—not just run the same animation or

sound over and over.

• Applications require main method to execute.

• Applets do not require main method.

• Java's console input is quite limited

• Applets are graphical and window-based.

L 2.1

Life cycle of an applet

• Applets life cycle includes the following methods

1. init()

2. start()

3. paint()

4. stop()

5. destroy()

• When an applet begins, the AWT calls the following methods, in
this sequence:

init()

start()

paint()

• When an applet is terminated, the following sequence of method
calls takes place:

stop()

destroy()

L 2.2

• init(): The init() method is the first method to be called. This is
where you should initialize variables. This method is called only
once during the run time of your applet.

• start(): The start() method is called after init(). It is also called to
restart an applet after it has been stopped. Whereas init() is called
once—the first time an applet is loaded—start() is called each time
an applet's HTML document is displayed onscreen. So, if a user
leaves a web page and comes back, the applet resumes execution
at start().

• paint(): The paint() method is called each time applet's output
must be redrawn. paint() is also called when the applet begins
execution. Whatever the cause, whenever the applet must redraw its
output, paint() is called. The paint() method has one parameter of
type Graphics. This parameter will contain the graphics context,
which describes the graphics environment in which the applet is
running. This context is used whenever output to the applet is
required.

L 2.3

• stop(): The stop() method is called when a web
browser leaves the HTML document containing the
applet—when it goes to another page, for example.
When stop() is called, the applet is probably running.
Applet uses stop() to suspend threads that don't need
to run when the applet is not visible. To restart start() is
called if the user returns to the page.

• destroy(): The destroy() method is called when the
environment determines that your applet needs to be
removed completely from memory. The stop() method
is always called before destroy().

L 2.4

Types of applets

• Applets are two types

1.Simple applets

2.JApplets

• Simple applets can be created by extending Applet class

• JApplets can be created by extending JApplet class of

javax.swing.JApplet package

L 3.1

Creating applets
• Applets are created by extending the Applet class.

import java.awt.*;

import java.applet.*;

/*<applet code="AppletSkel" width=300 height=100></applet> */

public class AppletSkel extends Applet {

public void init() {

// initialization

}

public void start() {

// start or resume execution

}

public void stop() {

// suspends execution

}

public void destroy() {

// perform shutdown activities

}

public void paint(Graphics g) {

// redisplay contents of window

}

 }

L 3.2

passing parameters to applets

• APPLET tag in HTML allows you to pass parameters to applet.

• To retrieve a parameter, use the getParameter() method. It returns
the value of the specified parameter in the form of a String object.
// Use Parameters

import java.awt.*;

import java.applet.*;

/*

<applet code="ParamDemo" width=300 height=80>

<param name=fontName value=Courier>

<param name=fontSize value=14>

<param name=leading value=2>

<param name=accountEnabled value=true>

</applet>

*/

L 3.3

public class ParamDemo extends Applet{

String fontName;

int fontSize;

float leading;

boolean active;

// Initialize the string to be displayed.

public void start() {

String param;

fontName = getParameter("fontName");

if(fontName == null)

fontName = "Not Found";

param = getParameter("fontSize");

try {

if(param != null) // if not found

fontSize = Integer.parseInt(param);

else

fontSize = 0;

} catch(NumberFormatException e) {

fontSize = -1;

}

param = getParameter("leading");

L 3.4

try {

if(param != null) // if not found

leading = Float.valueOf(param).floatValue();

else

leading = 0;

} catch(NumberFormatException e) {

leading = -1;

}

param = getParameter("accountEnabled");

if(param != null)

active = Boolean.valueOf(param).booleanValue();

}

// Display parameters.

public void paint(Graphics g) {

g.drawString("Font name: " + fontName, 0, 10);

g.drawString("Font size: " + fontSize, 0, 26);

g.drawString("Leading: " + leading, 0, 42);

g.drawString("Account Active: " + active, 0, 58);

}

}

L 4.1

Introduction to swings

• Swing is a set of classes that provides more powerful and flexible
components than are possible with the AWT.

• In addition to the familiar components, such as buttons, check
boxes, and labels, Swing supplies several exciting additions,
including tabbed panes, scroll panes, trees, and tables.

• Even familiar components such as buttons have more capabilities in
Swing.

• For example, a button may have both an image and a text string
associated with it. Also, the image can be changed as the state of
the button changes.

• Unlike AWT components, Swing components are not implemented
by platform-specific code.

• Instead, they are written entirely in Java and, therefore, are platform-
independent.

• The term lightweight is used to describe such elements.

L 4.2

• The Swing component are defined in javax.swing
1. AbstractButton: Abstract superclass for Swing buttons.

2. ButtonGroup: Encapsulates a mutually exclusive set of buttons.

3. ImageIcon: Encapsulates an icon.

4. JApplet: The Swing version of Applet.

5. JButton: The Swing push button class.

6. JCheckBox: The Swing check box class.

7. JComboBox : Encapsulates a combo box (an combination of a
drop-down list and text field).

8. JLabel: The Swing version of a label.

9. JRadioButton: The Swing version of a radio button.

10.JScrollPane: Encapsulates a scrollable window.

11.JTabbedPane: Encapsulates a tabbed window.

12.JTable: Encapsulates a table-based control.

13.JTextField: The Swing version of a text field.

14.JTree: Encapsulates a tree-based control.

L 4.3

Limitations of AWT

• AWT supports limited number of GUI
components.

• AWT components are heavy weight
components.

• AWT components are developed by using
platform specific code.

• AWT components behaves differently in different
operating systems.

• AWT component is converted by the native
code of the operating system.

L 4.4

• Lowest Common Denominator

– If not available natively on one Java platform,

not available on any Java platform

• Simple Component Set

• Components Peer-Based

– Platform controls component appearance

– Inconsistencies in implementations

• Interfacing to native platform error-prone

L 4.5

L 5.1

L 5.2

Model

• Model consists of data and the functions

that operate on data

• Java bean that we use to store data is a

model component

• EJB can also be used as a model

component

L 5.3

view

• View is the front end that user interact.

• View can be a

 HTML

 JSP

 Struts ActionForm

L 5.4

Controller

• Controller component responsibilities

1. Receive request from client

2. Map request to specific business operation

3. Determine the view to display based on the

result of the business operation

L 5.5

components

• Container

– JComponent

• AbstractButton

– JButton

– JMenuItem

» JCheckBoxMenuItem

» JMenu

» JRadioButtonMenuItem

– JToggleButton

» JCheckBox

» JRadioButton

L 5.6

Components (contd…)

• JComponent

– JComboBox

– JLabel

– JList

– JMenuBar

– JPanel

– JPopupMenu

– JScrollBar

– JScrollPane

L 5.7

Components (contd…)

• JComponent

– JTextComponent

• JTextArea

• JTextField

– JPasswordField

• JTextPane

– JHTMLPane

L 5.8

Containers

• Top-Level Containers

• The components at the top of any Swing

containment hierarchy

L 5.9

General Purpose Containers

 • Intermediate containers that can be used

under many different circumstances.

L 5.10

Special Purpose Container

• Intermediate containers that play specific

roles in the UI.

L 6.1

Exploring swing- JApplet,

• If using Swing components in an applet,

subclass JApplet, not Applet

– JApplet is a subclass of Applet

– Sets up special internal component event

handling, among other things

– Can have a JMenuBar

– Default LayoutManager is BorderLayout

L 6.2

JFrame

public class FrameTest {
 public static void main (String args[]) {
 JFrame f = new JFrame ("JFrame Example");
 Container c = f.getContentPane();
 c.setLayout (new FlowLayout());
 for (int i = 0; i < 5; i++) {
 c.add (new JButton ("No"));
 c.add (new Button ("Batter"));
 }
 c.add (new JLabel ("Swing"));
 f.setSize (300, 200);
 f.show();
 }
}

L 6.3

JComponent

• JComponent supports the following components.
• JComponent

– JComboBox

– JLabel

– JList

– JMenuBar

– JPanel

– JPopupMenu

– JScrollBar

– JScrollPane

– JTextComponent

• JTextArea

• JTextField

– JPasswordField

• JTextPane

– JHTMLPane

L 7.1

Icons and Labels

• In Swing, icons are encapsulated by the ImageIcon
class, which paints an icon from an image.

• constructors are:

 ImageIcon(String filename)

 ImageIcon(URL url)

• The ImageIcon class implements the Icon interface
that declares the methods

1. int getIconHeight()

2. int getIconWidth()

3. void paintIcon(Component comp,Graphics g,int x,
int y)

L 7.2

• Swing labels are instances of the JLabel class, which extends
JComponent.

• It can display text and/or an icon.

• Constructors are:

JLabel(Icon i)

Label(String s)

JLabel(String s, Icon i, int align)

• Here, s and i are the text and icon used for the label. The align
argument is either LEFT, RIGHT, or CENTER. These constants are
defined in the SwingConstants interface,

• Methods are:

1. Icon getIcon()

2. String getText()

3. void setIcon(Icon i)

4. void setText(String s)

• Here, i and s are the icon and text, respectively.

L 7.3

Text fields

• The Swing text field is encapsulated by the
JTextComponent class, which extendsJComponent.

• It provides functionality that is common to Swing text
components.

• One of its subclasses is JTextField, which allows you to
edit one line of text.

• Constructors are:

JTextField()

JTextField(int cols)

JTextField(String s, int cols)

JTextField(String s)

• Here, s is the string to be presented, and cols is the
number of columns in the text field.

L 7.4

Buttons

• Swing buttons provide features that are not found in the Button class
defined by the AWT.

• Swing buttons are subclasses of the AbstractButton class, which extends
JComponent.

• AbstractButton contains many methods that allow you to control the
behavior of buttons, check boxes, and radio buttons.

• Methods are:

1. void setDisabledIcon(Icon di)

2. void setPressedIcon(Icon pi)

3. void setSelectedIcon(Icon si)

4. void setRolloverIcon(Icon ri)

• Here, di, pi, si, and ri are the icons to be used for these different conditions.

• The text associated with a button can be read and written via the following
methods:

1. String getText()

2. void setText(String s)

• Here, s is the text to be associated with the button.

L 8.1

JButton

• The JButton class provides the functionality of a push

button.

• JButton allows an icon, a string, or both to be

associated with the push button.

• Some of its constructors are :

JButton(Icon i)

JButton(String s)

JButton(String s, Icon i)

• Here, s and i are the string and icon used for the button.

L 8.2

Check boxes

• The JCheckBox class, which provides the functionality of a check
box, is a concrete implementation of AbstractButton.

• Some of its constructors are shown here:

JCheckBox(Icon i)

JCheckBox(Icon i, boolean state)

JCheckBox(String s)

JCheckBox(String s, boolean state)

JCheckBox(String s, Icon i)

JCheckBox(String s, Icon i, boolean state)

• Here, i is the icon for the button. The text is specified by s. If state is
true, the check box is initially selected. Otherwise, it is not.

• The state of the check box can be changed via the following
method:

 void setSelected(boolean state)

• Here, state is true if the check box should be checked.

L 8.3

Combo boxes

• Swing provides a combo box (a combination of a text field and a
drop-down list) through the JComboBox class, which extends
JComponent.

• A combo box normally displays one entry. However, it can also
display a drop-down list that allows a user to select a different entry.
You can also type your selection into the text field.

• Two of JComboBox's constructors are :

JComboBox()

JComboBox(Vector v)

• Here, v is a vector that initializes the combo box.

• Items are added to the list of choices via the addItem() method,
whose signature is:

 void addItem(Object obj)

• Here, obj is the object to be added to the combo box.

L 8.4

Radio Buttons

 • Radio buttons are supported by the JRadioButton class, which is a
concrete implementation of AbstractButton.

• Some of its constructors are :

 JRadioButton(Icon i)

 JRadioButton(Icon i, boolean state)

 JRadioButton(String s)

 JRadioButton(String s, boolean state)

 JRadioButton(String s, Icon i)

 JRadioButton(String s, Icon i, boolean state)

• Here, i is the icon for the button. The text is specified by s. If state is
true, the button is initially selected. Otherwise, it is not.

• Elements are then added to the button group via the following
method:

 void add(AbstractButton ab)

• Here, ab is a reference to the button to be added to the group.

L 9.1

Tabbed Panes
• A tabbed pane is a component that appears as a group of folders in a file

cabinet.

• Each folder has a title. When a user selects a folder, its contents become
visible. Only one of the folders may be selected at a time.

• Tabbed panes are commonly used for setting configuration options.

• Tabbed panes are encapsulated by the JTabbedPane class, which extends
JComponent. We will use its default constructor. Tabs are defined via the
following method:

 void addTab(String str, Component comp)

• Here, str is the title for the tab, and comp is the component that should be
added to the tab. Typically, a JPanel or a subclass of it is added.

• The general procedure to use a tabbed pane in an applet is outlined here:

 1. Create a JTabbedPane object.

 2. Call addTab() to add a tab to the pane. (The arguments to this method
define the

 title of the tab and the component it contains.)

 3. Repeat step 2 for each tab.

 4. Add the tabbed pane to the content pane of the applet.

L 9.2

Scroll Panes
• A scroll pane is a component that presents a rectangular area in which a

component may be viewed. Horizontal and/or vertical scroll bars may be
provided if necessary.

• Scroll panes are implemented in Swing by the JScrollPane class, which
extends JComponent. Some of its constructors are :

 JScrollPane(Component comp)

 JScrollPane(int vsb, int hsb)

 JScrollPane(Component comp, int vsb, int hsb)

• Here, comp is the component to be added to the scroll pane. vsb and hsb
are int constants that define when vertical and horizontal scroll bars for this
scroll pane areshown.

• These constants are defined by the ScrollPaneConstants interface.

1. HORIZONTAL_SCROLLBAR_ALWAYS

2. HORIZONTAL_SCROLLBAR_AS_NEEDED

3. VERTICAL_SCROLLBAR_ALWAYS

4. VERTICAL_SCROLLBAR_AS_NEEDED

• Here are the steps to follow to use a scroll pane in an applet:

1. Create a JComponent object.

2. Create a JScrollPane object. (The arguments to the constructor
specify thecomponent and the policies for vertical and horizontal
scroll bars.)

3. Add the scroll pane to the content pane of the applet.

L 9.3

 Trees

• Data Model - TreeModel

– default: DefaultTreeModel

– getChild, getChildCount, getIndexOfChild,

getRoot, isLeaf

• Selection Model - TreeSelectionModel

• View - TreeCellRenderer

– getTreeCellRendererComponent

• Node - DefaultMutableTreeNode

L 9.4

Tables

• A table is a component that displays rows and columns of data. You can
drag the cursor on column boundaries to resize columns. You can also drag
a column to a new position.

• Tables are implemented by the JTable class, which extends JComponent.

• One of its constructors is :

 JTable(Object data[][], Object colHeads[])

• Here, data is a two-dimensional array of the information to be presented,
and colHeads is a one-dimensional array with the column headings.

• Here are the steps for using a table in an applet:

1. Create a JTable object.

2. Create a JScrollPane object. (The arguments to the constructor
specify the table and

the policies for vertical and horizontal scroll bars.)

3. Add the table to the scroll pane.

4. Add the scroll pane to the content pane of the applet.

	unit_1_SAMBASIVUDU M.pdf (p.1-84)
	unit_3.pdf (p.85-158)
	unit_4.pdf (p.159-211)
	unit_5.pdf (p.212-306)

